Synopsis: Supernova Footprint on the Moon

Lunar soil samples reveal an unusually high level of radioactive iron, which suggests a supernova in our vicinity within the last few million years.

About 2 million years ago, a star next door to our solar system may have gone boom. The fallout from such an explosion would explain abnormal levels of a radioactive iron isotope (60Fe) found in deep-sea samples. This nearby-supernova hypothesis—first proposed in 1999—is now supported by new evidence from the Moon. Researchers studying lunar soil samples have uncovered high levels of 60Fe that are consistent with Earth data. The “pristine” lunar record provides a more accurate estimate of the total amount of debris from nearby supernovae.

A primary interest in nearby supernovae stems from their possible connection with extinctions on Earth. Besides emitting deadly radiation, these events also spew out heavy elements, such as 60Fe, which can settle on planetary bodies within the blast zone. Detecting high levels of 60Fe in a geological sample implies a fairly recent (and close) supernova, since this isotope has a radioactive half-life of 2.6 million years.

Although high 60Fe concentrations were originally found in 2-million-year-old oceanic crust, a better “archive” of the solar system’s past is the unworked surface of the Moon. Gunther Korschinek from the Technical University of Munich, Germany, and his colleagues obtained lunar soil samples from the Apollo missions. Using accelerator mass spectrometry, they found the ratio of 60Fe to total iron was around 1 part in 1015, which is about 10 times higher than the measured background. Cosmic-ray interactions—another possible source of 60Fe—could not account for this high concentration. The team estimated the time-integrated flux of 60Fe, which is a valuable constraint on models of our local stellar environment.

This research is published in Physical Review Letters.

–Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Astrophysics

Previous Synopsis

Particles and Fields

Explaining a 750 GeV Bump

Read More »

Next Synopsis

Astrophysics

Blazar Tally

Read More »

Related Articles

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science
Astrophysics

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science

Analyzing its first year of data, the Dark Energy Survey has demonstrated that weak lensing can probe cosmological parameters with a precision comparable to cosmic microwave background observations. Read More »

Focus: Solar Wind Shock Wave Gives Ions a Push
Plasma Physics

Focus: Solar Wind Shock Wave Gives Ions a Push

Measurements made by NASA’s New Horizons spacecraft show that shock waves in the solar wind transfer significant energy to ionized interstellar atoms, confirming a decades-old prediction. Read More »

Synopsis: 2D Maps of Solar Wind
Astrophysics

Synopsis: 2D Maps of Solar Wind

Maps of solar wind velocities derived from satellite images of the Sun’s corona could help researchers improve solar wind models. Read More »

More Articles