Synopsis: Supernova Footprint on the Moon

Lunar soil samples reveal an unusually high level of radioactive iron, which suggests a supernova in our vicinity within the last few million years.

About 2 million years ago, a star next door to our solar system may have gone boom. The fallout from such an explosion would explain abnormal levels of a radioactive iron isotope (60Fe) found in deep-sea samples. This nearby-supernova hypothesis—first proposed in 1999—is now supported by new evidence from the Moon. Researchers studying lunar soil samples have uncovered high levels of 60Fe that are consistent with Earth data. The “pristine” lunar record provides a more accurate estimate of the total amount of debris from nearby supernovae.

A primary interest in nearby supernovae stems from their possible connection with extinctions on Earth. Besides emitting deadly radiation, these events also spew out heavy elements, such as 60Fe, which can settle on planetary bodies within the blast zone. Detecting high levels of 60Fe in a geological sample implies a fairly recent (and close) supernova, since this isotope has a radioactive half-life of 2.6 million years.

Although high 60Fe concentrations were originally found in 2-million-year-old oceanic crust, a better “archive” of the solar system’s past is the unworked surface of the Moon. Gunther Korschinek from the Technical University of Munich, Germany, and his colleagues obtained lunar soil samples from the Apollo missions. Using accelerator mass spectrometry, they found the ratio of 60Fe to total iron was around 1 part in 1015, which is about 10 times higher than the measured background. Cosmic-ray interactions—another possible source of 60Fe—could not account for this high concentration. The team estimated the time-integrated flux of 60Fe, which is a valuable constraint on models of our local stellar environment.

This research is published in Physical Review Letters.

–Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Astrophysics

Previous Synopsis

Particles and Fields

Explaining a 750 GeV Bump

Read More »

Next Synopsis

Astrophysics

Blazar Tally

Read More »

Related Articles

Synopsis: Space Measurements of Secondary Cosmic Rays
Astrophysics

Synopsis: Space Measurements of Secondary Cosmic Rays

New data from the International Space Station shed light on how secondary cosmic rays propagate through space. Read More »

Focus: Detecting Gravitational Waves by Watching Stars
Astrophysics

Focus: Detecting Gravitational Waves by Watching Stars

A passing gravitational wave produces shifts in the apparent positions of the stars, and these motions should be detectable with the Gaia space telescope. Read More »

Viewpoint: Reining in Alternative Gravity
Astrophysics

Viewpoint: Reining in Alternative Gravity

Theorists have tightly constrained alternative theories of gravity using the recent joint detection of gravitational waves and light from a neutron star merger. Read More »

More Articles