Synopsis: Did Black Hole “Mimickers” Produce LIGO Signal?

Recently detected gravitational waves might not be a signature of black holes but of other massive objects that lack an event horizon.
Synopsis figure
V. Cardoso et al., Phys. Rev. Lett. (2016)

In September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves for the first time. Although the presumed source was a black hole merger, a new theoretical analysis shows that other hypothetical objects, like so-called gravastars, could produce a similar gravitational wave signal. The authors argue that ruling out such black hole “mimickers” will require more detailed observations of the post-merger phase.

The merger of two massive, compact objects produces gravitational waves before, during, and after the event. The post-merger, or “ringdown,” phase corresponds to the relaxation of the merged object from a highly distorted shape to a spherical one. Physicists often assume that ringdown waves are a direct sign that the merger produced a black hole. But Vitor Cardoso from the University of Lisbon, Portugal, and collaborators show that an unbiased ringdown analysis needs to take into account alternative models (for example, gravastar and firewall).

These alternative models deny the possibility of event horizons—the no-exit boundaries that define black holes. However, compact objects within these models would still have a light ring—the relativistic boundary within which photons can be trapped in circular orbits. Cardoso and his colleagues calculated the ringdown phase from a generic horizonless compact object. They modeled the light ring around this black hole mimicker using a wormhole, which is a double-funnel warping of spacetime. The results showed that the mimicker’s gravitational waves are nearly indistinguishable from the black hole case, up until the end when the two signals diverge. Unfortunately, LIGO’s data from September 2015 falls off before this divergence, so louder events or more sensitive detectors will be needed to determine whether ringdown behavior confirms black holes.

This research is published in Physical Review Letters.

–Michael Schirber


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Quantum Physics

One-Way Quantumness

Read More »

Next Synopsis

Atomic and Molecular Physics

Losing Light in a BEC

Read More »

Related Articles

Synopsis: Self-Interacting Dark Matter Scores Again

Synopsis: Self-Interacting Dark Matter Scores Again

Dark matter that interacts with itself provides a better description of the speeds of stars in galaxies than dark matter that doesn’t self-interact. Read More »

Synopsis: Searching for Neutron Star Gravitational Waves

Synopsis: Searching for Neutron Star Gravitational Waves

The first run of LIGO and Virgo’s gravitational-wave search shows no evidence of spinning asymmetric neutron stars, but recent upgrades could make the detection possible. Read More »

Viewpoint: Neutron-Star Implosions as Heavy-Element Sources

Viewpoint: Neutron-Star Implosions as Heavy-Element Sources

A dramatic scenario in which a compact black hole eats a spinning neutron star from inside might explain a nearby galaxy’s unexpectedly high abundance of heavy elements. Read More »

More Articles