Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach.

Olympic swimmers wear swimsuits that reduce viscous drag, so they’d likely be jealous of Helicobacter pylori, a type of gut bacteria that releases chemicals to lower the resistance of the surrounding fluid. A new theoretical study combines diffusion and motility equations to determine the size of the easy-swimming zone formed by H. pylori.

The ulcer-causing H. pylori is one of the few organisms that can survive in the highly acidic environment of the stomach. It does so by secreting chemicals that neutralize the acid in the region around it. Recently, researchers discovered that this chemical buffer zone also helps the organism swim through the gel-like mucus covering the stomach lining. When neutralized, the mucus becomes less viscous as well as less elastic.

An important factor in describing H. pylori’s behavior is the size of the buffer zone, which has yet to be measured. In their motility model, Seyed Mirbagheri and Henry Fu from the University of Nevada, Reno, characterized H. pylori as a wriggling sheet moving in a pocket of normal (Newtonian) fluid surrounded by a stiff gel. They showed that the microbe’s speed depends on the size of the pocket. In a second analysis, they modeled the diffusion of neutralizing agents as H. pylori is moving. In order to make the two models consistent, the researchers found that the pocket must be around 40 micrometers, which is much larger than the bacteria cell. This modeling approach might be applied to other organisms (like E. coli) that may affect their environment in a way that benefits their motility.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological PhysicsFluid Dynamics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Beat Strong, My Liquid Gallium Heart
Fluid Dynamics

Synopsis: Beat Strong, My Liquid Gallium Heart

Applying a current across a drop of liquid gallium induces an oscillatory motion reminiscent of that of a beating heart. Read More »

Viewpoint: A Toy Model for Active Interfaces
Biological Physics

Viewpoint: A Toy Model for Active Interfaces

A new statistical model predicts the evolving shape of a cellular membrane by accounting for the active feedback between the membrane and attached proteins. Read More »

Focus: Puzzling Tropical Wind Pattern Generated with Simple Model
Geophysics

Focus: Puzzling Tropical Wind Pattern Generated with Simple Model

2D simulations of the atmosphere, with few assumptions, can generate a slowly oscillating, tropical wind pattern that has puzzled atmospheric scientists. Read More »

More Articles