Synopsis: Cavity-Controlled Chemistry

The quantized electromagnetic field in a cavity can be used to accelerate the dynamics of electron transfer in molecular reactions.
Synopsis figure
Felipe Herrera/University of Santiago

By confining atoms and molecules in microscopic cavities, researchers can stop or accelerate an electronic transition or keep a molecule indefinitely in an excited state. These effects result from the interaction of the molecules with the quantized electromagnetic field in a cavity. Felipe Herrera from the University of Santiago, Chile, and Frank Spano from Temple University in Philadelphia now suggest that similar interactions can be used to control important types of chemical reactions. Specifically, their calculations indicate that electron transfer reactions in a cavity can be much faster than in free space.

Herrera and Spano focused on a type of reaction—found in photosynthesis and cellular respiration—that involves the transfer of electrons between atoms or molecules. The speed of these reactions is often limited by the molecular nuclei, which are prone to reorganize as the electrons travel from the donor to the acceptor groups. This reorganization limits the reaction speed because nuclei move much more slowly than electrons. Through quantum-mechanical calculations, Herrera and Spano showed that the field within the cavity can selectively couple to and accelerate electronic transitions that allow electron transfer to take place before the nuclei can reconfigure. Under such conditions, the researchers projected that the reaction rates might increase by up to 2 orders of magnitude. Their findings could stimulate the development of novel optoelectronic devices, such as cavity-enhanced solar cells and light-emitting diodes.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum PhysicsOpticsPhysical Chemistry

Previous Synopsis

Energy Research

Good News for Stellarators

Read More »

Next Synopsis

Spintronics

Magnon Drag

Read More »

Related Articles

Synopsis: Excited by Shaped Electrons
Nanophysics

Synopsis: Excited by Shaped Electrons

Electrons with a modulated wave function might enable improvements in electron microscopy and quantum computing. Read More »

Focus: Green Light for Terahertz Movies
Atomic and Molecular Physics

Focus: Green Light for Terahertz Movies

A new technique uses long-wavelength infrared radiation to produce video with a high frame rate, which could be useful for nondestructive testing of products. Read More »

Synopsis: Making Electron Pulses Shorter and Steadier
Optics

Synopsis: Making Electron Pulses Shorter and Steadier

Terahertz radiation can be used to produce short and well-timed pulses of electrons—which could benefit electron diffraction schemes used to image ultrafast atomic and molecular dynamics. Read More »

More Articles