Synopsis: Forming Granular Plugs

Experiments on grain-water-air mixtures flowing through a tube find that frictional forces between the grains and the tube lead to the creation of a series of plugs.
Synopsis figure
Bjørnar Sandnes

Fluid-grain flows, such as mudslides and blood, are difficult to model because of complex frictional forces that act on and between the grains. New experiments explore the behavior of a three-phase flow that combines liquid, air, and grains in a narrow tube. At relatively slow flow rates, the grains pile up and form a periodic pattern of tube-blocking plugs. The researchers explain this process by accounting for the frictional forces acting in the system.

Many different forces are at work inside fluid-grain flows. The fluid exerts a viscous force that pushes grains downstream, while the grains feel friction from rubbing against each other and on the walls of the container. If a second fluid is added, then capillary forces from the fluid-fluid boundary (or meniscus) may also act on the grains.

Guillaume Dumazer from the University of Oslo, Norway, and his colleagues performed experiments on a system containing water, air, and grains (small glass beads). They placed the water-grain mixture in a long, 2-mm-diameter tube. Water was drawn from one end of the tube via a syringe, forcing an air column to be pulled in through the other end. At high water-flow rates, the viscous forces dragged the grains along, evacuating the tube completely. But at low flow rates, the air-water meniscus pushed grains into piles that clogged the tubes because of the friction from the tube walls. This plug-forming process occurred multiple times at evenly spaced locations along the tube. The team constructed a model that explained the plug pattern and predicted the minimum flow rate needed to prevent plug formation. This work may lead to a better understanding of other fluid-grain flows, like, for example, the hydraulically driven flows of ingredients found in the pharmaceutical industry.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Gravitation

Skydiving Spins

Read More »

Related Articles

Synopsis: Beat Strong, My Liquid Gallium Heart
Fluid Dynamics

Synopsis: Beat Strong, My Liquid Gallium Heart

Applying a current across a drop of liquid gallium induces an oscillatory motion reminiscent of that of a beating heart. Read More »

Focus: Puzzling Tropical Wind Pattern Generated with Simple Model
Geophysics

Focus: Puzzling Tropical Wind Pattern Generated with Simple Model

2D simulations of the atmosphere, with few assumptions, can generate a slowly oscillating, tropical wind pattern that has puzzled atmospheric scientists. Read More »

Focus: Fluid Interactions Help Fish in a School Swim Faster
Fluid Dynamics

Focus: Fluid Interactions Help Fish in a School Swim Faster

Simulations of fish schools that include fluid dynamics in addition to the usual coordination of individuals lead to faster swimmers and reveal a new collective swimming mode. Read More »

More Articles