Synopsis: Searching for Majorana Neutrinos

The KamLAND-Zen collaboration has run the most sensitive search to date for a radioactive decay that could reveal whether neutrinos are Majorana fermions.
Synopsis figure
KamLAND-Zen Collaboration

Are neutrinos and antineutrinos the same particles, as hypothesized by physicist Ettore Majorana? If true, this “Majorana” nature of neutrinos could explain why neutrinos have mass and why the Universe has more matter than antimatter. Using an underground neutrino detector in Japan, the KamLAND-Zen collaboration has carried out the most sensitive search to date for a process called neutrinoless double-beta decay, which could confirm Majorana’s hypothesis. The results set stringent constraints on the possible properties of Majorana neutrinos.

Double-beta decay is a nuclear process in which two neutrons turn into two protons (or vice versa), emitting two antineutrinos. If neutrinos are Majorana fermions, the two antineutrinos could annihilate each other, and some double-beta decays would emit no antineutrinos. However, neutrinoless decay is believed to be extremely rare. Searches of the process using large amounts of the 35 naturally occurring isotopes that can undergo double-beta decay (such as xenon-136) have so far come up empty.

The KamLAND-Zen collaboration boosted their experimental sensitivity to neutrinoless double-beta decays through a combination of factors. The researchers deployed clean detectors with very low background noise. And they used an unprecedented amount of xenon-136, which they purified to remove any radioactive contaminants that could produce unwanted signals in the detectors. Combining data from several years, they improved the limit on the probability of neutrinoless double-beta decay by sixfold compared to previous searches. This probability corresponds to a decay lifetime whose staggering value exceeds 1026 years. This measurement allowed the researchers to set the most stringent upper limit on the possible mass of Majorana neutrinos (the particle must be lighter than 61–165 meV).

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Spintronics

Watching Spin Currents

Read More »

Next Synopsis

Condensed Matter Physics

World of Weyl Craft

Read More »

Related Articles

Viewpoint: Zeroing in on the Muon’s Magnetism
Particles and Fields

Viewpoint: Zeroing in on the Muon’s Magnetism

A theoretical reevaluation of the muon’s magnetic moment gives the highest precision prediction so far, while doubling down on a discrepancy with experiments. Read More »

Synopsis: How to Untangle Quark and Gluon Jets
Particles and Fields

Synopsis: How to Untangle Quark and Gluon Jets

Inspired by a text-mining technique, scientists have developed a more direct way to distinguish quark jets from gluon jets in high-energy particle collisions. Read More »

Viewpoint: Sizing Up the Top Quark’s Interaction with the Higgs
Particles and Fields

Viewpoint: Sizing Up the Top Quark’s Interaction with the Higgs

A proton collision experiment at CERN provides a new handle on the Higgs boson’s interaction with the heaviest of the quarks. Read More »

More Articles