Synopsis: Suppressing the Splash

A drop’s splash can be reduced and even eliminated by varying the softness of the surface that it hits.
Synopsis figure
C. Howland et al., Phys. Rev. Lett (2016)

When a droplet impacts a hard surface, it splashes, ejecting liquid fragments in every direction. This is fine if the fluid needs to be distributed over a wide area, but isn’t so great in hospitals that need to stay sterile, or in applications involving toxic fluids. Now researchers have shown that a drop’s splash is suppressed if the surface is made of a soft material, like a gel or a rubber.

Robert Style, from the University of Oxford, UK, and colleagues bombarded a series of soft silicone gels of varying stiffness with drops of ethanol and compared their splashing behavior to that of drops impacting a hard surface. During the initial impact, the drops behave in the same way for all surfaces: The drop flattens and starts spreading out like a pancake. For hard surfaces, this outer, thinner rim of fluid then breaks up into a fine spray of tinier drops. For softer and softer surfaces, the spraying decreases until eventually the pancake stays whole. According to the group’s simulations, the deformation of the soft surface during the first 30 𝜇s of impact is what’s behind splash suppression. This deformation absorbs just a few percent of the drop’s kinetic energy, but can be sufficient to keep it intact.

The team found that splashes can be generated on soft surfaces, but the height from which the drops have to be released is nearly twice that required to get a splash on a hard surface.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Semiconductor Physics

Valley of the Dichalcogenides

Read More »

Next Synopsis

Particles and Fields

Making Monopoles with Waves

Read More »

Related Articles

Focus: More Energy from Ocean Waves
Energy Research

Focus: More Energy from Ocean Waves

A new structure concentrates water wave motion and could lead to improved techniques for harvesting this renewable energy resource. Read More »

Synopsis: Levitating in a Fluid
Fluid Dynamics

Synopsis: Levitating in a Fluid

Researchers have identified a regime in which a magnetic stir bar can be made to levitate while it spins in a fluid. ­­ Read More »

Focus: Fluid Flow through T-Junction Traps More Particles than Expected
Fluid Dynamics

Focus: Fluid Flow through T-Junction Traps More Particles than Expected

Computer modeling shows that surprisingly large regions can trap particles carried by a fluid that is moving steadily through a pipe junction. Read More »

More Articles