Synopsis: Cosmic Test of Quantum Mechanics

Light from two stars in the Milky Way has been used to test an open loophole of quantum physics.

Quantum mechanics predicts that two particles can be so closely connected (entangled) that measuring the state of one appears to instantly affect the state of the other, regardless of how far apart the particles are. In 2015, scientists cemented this “action-at-a-distance” prediction by simultaneously closing two loopholes that undermined it (see 16 December 2015 Viewpoint). But another loophole remained ajar: some unknown outside influence could be altering the experiment’s settings to fix their outcome. Now researchers have addressed this loophole by preparing randomized measurement settings using light from stars in the Milky Way.

Action-at-a-distance, or nonlocality, is verified via Bell tests, which typically measure the polarizations of two entangled photons separated by some distance. Issues with the design and execution of experiments could influence the outcome, a possibility eliminated in the 2015 experiments. But what if some other outside factor, as yet unknown, had manipulated the experimental settings or tipped off the source of entangled particles as to what the settings would be? To test this possibility, David Kaiser from the Massachusetts Institute of Technology, Cambridge, Anton Zeilinger from the Institute for Quantum Optics and Quantum Information in Vienna, and colleagues replaced the laser-based quantum random number generators typically used to assign experimental settings (see 16 December 2015 Synopsis) with “cosmic setting generators”—random number generators that use light from stars to keep the settings unpredictable.

The experiments performed by the group produced results consistent with nonlocality, ruling out outside control, at least over the 600 years it took the starlight to travel to Earth from the closest star they used. Anything trying to engineer the outcome of this experiment would have had to act prior to the photon leaving that star. The researchers suggest that light from more distant galaxies or radiation from the cosmic microwave background could be used to push this time frame back even further.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


More Features »


More Announcements »

Subject Areas

Quantum PhysicsAstrophysics

Previous Synopsis

Next Synopsis

Soft Matter

Polymer Alchemy

Read More »

Related Articles

Viewpoint: Spinning Black Holes May Grow Hair

Viewpoint: Spinning Black Holes May Grow Hair

A spinning black hole may lose up to 9% of its mass by spontaneously growing “hair” in the form of excitations of a hypothetical particle field with a tiny mass. Read More »

Synopsis: A Reionization Filter for the Cosmic Microwave Background

Synopsis: A Reionization Filter for the Cosmic Microwave Background

A new method of analyzing cosmic microwave background data could isolate signatures from the so-called reionization period that occurred a few hundred million years after the big bang. Read More »

Synopsis: LIGO’s Black Hole Got the Boot

Synopsis: LIGO’s Black Hole Got the Boot

An analysis of data from LIGO’s second gravitational-wave event indicates that a supernova can impart a strong kick to the black hole it creates. Read More »

More Articles