Synopsis: Polymer Alchemy

Light could alter the chemistry of multicomponent polymers, allowing for the control of structures they form.
Synopsis figure
D.-W. Sun and M. Müller, Phys. Rev. Lett. (2017)

When two or more different polymers are bonded together, structures such as cylinders or sheets can form in the material. The specific structure that is created depends on the properties of each polymer or “block,” such as its length. Now researchers have proposed a way to directly alter the structure using polymers made of three distinct blocks, in which the chemical and physical properties of the middle block can be rapidly altered using light. This polymer “alchemy” could be used to control the structures that form in this system and create previously unattainable ones.

De-Wen Sun and Marcus Müller at the University of Göttingen, Germany, simulated an ACB “triblock” polymer where the chemistry of the middle C block can be changed with light, switching the block from being miscible with the B end to being miscible with the A end. Starting with a B-miscible C block, they first allow the polymer to self-assemble into its equilibrium structure and then start tinkering. Changing the chemistry of the C block to make it miscible with the A end alters the free energy of the material. The polymers start to jiggle around, reassembling into some new metastable structure. For example, when the blocks have a length ratio of roughly 1:4, the shorter A block forms spheres, arranged on a body-centered cubic lattice, within a B-C matrix. But after a complete C block “alchemic” transformation, this structure reverses to an intricate pattern of B spheres in an A-C matrix, one that has not been observed before in polymer systems. The team predicts several other new polymer structures, extending the templating capabilities of these materials.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Soft Matter

Previous Synopsis

Quantum Physics

Cosmic Test of Quantum Mechanics

Read More »

Next Synopsis

Particles and Fields

Looking for Weightier Axions

Read More »

Related Articles

Viewpoint: Jamming Grains Come Full Circle
Soft Matter

Viewpoint: Jamming Grains Come Full Circle

The characterization of a new transition in sheared grains helps to fill in the phase diagram for granular materials. Read More »

Synopsis: Softening Tones Make Shear-Thickening Fluids Relax
Materials Science

Synopsis: Softening Tones Make Shear-Thickening Fluids Relax

An acoustic signal can control the viscosity in shear-thickening materials, which have potential uses as impact absorbers. Read More »

Focus: Friction, Not Inertia, Controls Avalanches
Soft Matter

Focus: Friction, Not Inertia, Controls Avalanches

By tuning the friction between tiny beads suspended in water, researchers gain new understanding of how avalanches begin. Read More »

More Articles