Synopsis: Drops Shatter in the Cold

High-speed video and modeling reveal the conditions under which water drops explode when they’re frozen from the outside in.
Synopsis figure
S. Wildeman et al., Phys. Rev. Lett. (2017)

Droplets of water can burst apart when they freeze, sending out shards of ice in all directions. Sander Wildeman at the University of Twente in the Netherlands and colleagues have now filmed this process in unprecedented detail—from the formation of the first ice crystal to the final bang. This footage, plus the groups’ model-based calculations, reveals when and why water drops rupture as they freeze from the outside in.

The team began by supercooling a roughly millimeter-sized water drop in a specially designed chamber. This step puts the droplet at a temperature below its freezing point but leaves it free of ice crystals, thus ensuring the same starting conditions for all experiments. The researchers then set the freezing process in motion by touching the drop with a tip.

The team’s high-speed videos reveal that the freezing process in drops is complex. Within a few microseconds of being touched, a “shell” of solid ice encapsulates the drop and starts to thicken inwards, compressing still-liquid water. Some of the building pressure is released by an “arm” of ice that extends from one side of the drop. But eventually, cracks and bubbles form, and within about two seconds of the process beginning, the droplet shatters. Turning to their model, the group predicts that drops with diameters larger than 50 𝜇m will always explode when frozen because of their high inner pressures. Smaller drops, however, never burst because the surface tension of the shell is strong enough to keep them intact. The size dependence might influence the formation of hailstones and other precipitation.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Condensed Matter Physics

Revealing a Hidden Spin Polarization

Read More »

Next Synopsis

Complex Systems

Why the Darknet is Robust

Read More »

Related Articles

Focus: New Patterns for an Old Effect
Fluid Dynamics

Focus: New Patterns for an Old Effect

Particles that trace the vibration pattern of a surface behave differently underwater—an effect that could potentially allow manipulation of microscopic particles for biomedical purposes. Read More »

Synopsis: Liquid Jet Coils Around Cylinder
Fluid Dynamics

Synopsis: Liquid Jet Coils Around Cylinder

A water stream can stick to a cylinder, flowing around its surface in a helix-like pattern. Read More »

Synopsis: Light Shapes Flat Liquid Interfaces into Cones
Fluid Dynamics

Synopsis: Light Shapes Flat Liquid Interfaces into Cones

Researchers deform the interface between two immiscible liquids using a laser beam, creating a cone-shaped structure that can emit a fluid jet from its tip. Read More »

More Articles