Synopsis

The Geometry of Arctic Ponds

Physics 11, s40
A geometric model of meltwater ponds may help predict how the polar ice caps might evolve under future climate changes.
NASA IceBridge

Climate change has dramatically altered the Arctic, with sea ice melting faster than large-scale models predicted. Part of the reason for this underestimation is the lack of a full understanding of the ponds that develop from the melting ice. A new geometric model of Arctic ponds can reproduce observed distributions of pond size and shape. Because of its simplicity, the model may prove to be practical in predicting how further warming could affect polar ice caps.

When Arctic sea ice melts, meltwater ponds of various shapes and sizes form on the ice surface. The ponds have a dramatic impact on energy transport, as water is less reflective and more absorbing of solar flux than either ice or snow. This property leads to a positive feedback mechanism: the more ponds form, the more sunlight is absorbed, and the more melting occurs. Researchers are currently trying to formulate pond models that might allow them to incorporate these small-scale feedback effects into large-scale climate models.

Predrag Popović from the University of Chicago and his colleagues have devised a simple pond model that is based on drawing circles randomly on a plane and assuming that melt ponds form in the voids between the circles. The model has just two input parameters: the mean circle radius and the fraction of surface area covered by voids. The team tuned these parameters so that the voids exhibit the same spatial correlations as those observed in melt ponds. Using this parameterization, they showed that the model accurately reproduces other pond features, such as the fractal characterization of their shapes and the pond abundance as a function of area.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

GeophysicsInterdisciplinary Physics

Related Articles

Ableism Puts Neurodivergent Students at a Disadvantage
Interdisciplinary Physics

Ableism Puts Neurodivergent Students at a Disadvantage

While undergraduate physics students that identify as neurodivergent report little outright discrimination or violence, they do say that structural ableism has negatively impacted their time as students. Read More »

Particles Flutter as They Fall
Geophysics

Particles Flutter as They Fall

Experiments with small falling particles show that their orientations oscillate—which may help explain the settling of volcanic ash and the formation of snow.  Read More »

Turning up the Volume of Pouring Water
Interdisciplinary Physics

Turning up the Volume of Pouring Water

The volume of the sounds produced when a fluid jet hits the surface of a liquid depends on the shape of the jet. Read More »

More Articles