Synopsis: 2D Maps of Solar Wind

Maps of solar wind velocities derived from satellite images of the Sun’s corona could help researchers improve solar wind models.
Synopsis figure
I.-H. Cho et al., Phys. Rev. Lett. (2018)

The Sun’s upper atmosphere, or corona, spews out streams of charged particles. Known collectively as the solar wind, these particles can whiz through space at speeds exceeding 800 km/s and can cause phenomena on Earth like aurorae and geomagnetic storms. Astrophysicists believe that the particles are accelerated by a combination of thermal excitation and magnetic fields, but better data on the distribution of particle velocities are needed to test solar wind models. Now Yong-Jae Moon of Kyung Hee University in Yongin, South Korea, and colleagues have improved the available data by producing maps of solar wind velocities with unprecedented spatiotemporal resolution.

The researchers are not the first to map solar wind velocities. However, previous studies did not fully characterize the solar wind velocity as a function of the Sun’s latitude. Also, those studies either covered a time span much shorter than the full 11-year solar cycle or had insufficient time resolution to capture daily variations. Using data acquired between 1999 and 2010 by the satellite-based Solar and Heliospheric Observatory (SOHO), Moon and colleagues produced 2D solar-wind-speed maps that cover all latitudes for nearly a complete solar cycle and with a temporal resolution range of between 1 day and 1 year.

The maps reveal that the solar-wind-speed distribution doesn’t vary much as a function of latitude when solar activity is highest, as in 2000. But the distribution is anisotropic when activity is low, as in 2009, with faster speeds measured at the poles and slower speeds at the equator. While these findings were expected from previous observations, the high spatial and temporal resolution of these new maps provide researchers with a more complete dataset for testing models of solar wind acceleration.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

A Sextet of Entangled Laser Modes

Read More »

Next Synopsis

Related Articles

Viewpoint: Plot Thickens in Solar Opacity Debate
Plasma Physics

Viewpoint: Plot Thickens in Solar Opacity Debate

Experiments that replicate conditions in the Sun’s interior have found that the light absorption by certain elements doesn’t match expectations, raising questions about the accuracy of solar models. Read More »

Synopsis: On-Demand Solutions for Black Hole Mergers

Synopsis: On-Demand Solutions for Black Hole Mergers

An analytical model may provide a faster and more accurate way to analyze the gravitational-wave signals from black hole mergers. Read More »

Viewpoint: Dark Energy Faces Multiple Probes

Viewpoint: Dark Energy Faces Multiple Probes

The Dark Energy Survey has combined its analysis of four cosmological observables to constrain the properties of dark energy—paving the way for cosmological surveys that will run in the next decade. Read More »

More Articles