Synopsis: Ghost Imaging with Electrons

Ghost imaging—a sensitive imaging technique previously demonstrated with visible and x-ray light—has been extended to electrons.
Synopsis figure
G. Stewart/SLAC National Accelerator Laboratory

The expression “ghost imaging” might conjure up blurry photos of ghoulish visitors, but it’s actually a sophisticated approach to imaging objects that may not be suited to conventional imaging methods. To date, ghost imaging has employed visible light, x rays, and even helium atoms as illumination sources. And now, researchers have demonstrated a ghost-imaging setup for electrons. Compared to standard electron imaging, this approach can reduce the acquisition time and the radiation dose on the sample—an asset for samples easily damaged by radiation, like biomolecules.

Conventional ghost imaging constructs images of objects via correlations between the spatial profile of a “reference” beam and the intensity of a “signal” beam. The signal beam reflects off the target or is transmitted through it and then hits a single-pixel detector. Crucially, the signal beam can contain far fewer photons than the reference beam, avoiding sample damage.

Typically, the reference and signal beams are made by splitting one beam of light. The challenge for electron ghost imaging is that there are no devices that can split a beam of electrons with the typical energies used in imaging experiments. So Siqi Li of the SLAC National Accelerator Laboratory, California, and colleagues employed a system that replaced the reference beam with a computed version of it, obtained digitally from the incident electron beam. The pattern from this computed reference beam was then correlated with the intensity measured by the single-pixel detector. Using this setup, the team successfully reconstructed the image of a metal ring placed in the path of the signal beam. The authors suggest that similar approaches could be used with other illumination types, potentially extending ghost imaging to ions, plasmas, and neutrons.

This research is published in Physical Review Letters.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Condensed Matter Physics

Detection of a Zigzag Wigner Crystal

Read More »

Next Synopsis

Atomic and Molecular Physics

How to Create a Ghost Chemical Bond

Read More »

Related Articles

Focus: How to Locate a Nanoparticle with Sub-angstrom Precision
Optics

Focus: How to Locate a Nanoparticle with Sub-angstrom Precision

Laser tricks allow nanoparticle position measurements with a record 0.6-angstrom uncertainty, which will be useful in future nanotech devices. Read More »

Viewpoint: Record Distance for Quantum Cryptography
Optics

Viewpoint: Record Distance for Quantum Cryptography

An optical-fiber-based quantum cryptography scheme works over a record distance of 421 km and at much faster rates than previous long-distance demonstrations. Read More »

Viewpoint: Resonant Ionization Spectroscopy Technique Becomes Tabletop  Friendly
Atomic and Molecular Physics

Viewpoint: Resonant Ionization Spectroscopy Technique Becomes Tabletop Friendly

A modified version of a spectroscopic technique used at large-scale radioactive-ion-beam facilities could be used in tabletop experiments. Read More »

More Articles