Synopsis: Tuning an Atom’s Magnetic Field

Researchers modify the magnetic field of a single atom, demonstrating a potential way to store information in tiny devices of the future.
Synopsis figure
K. Yang et al., Phys. Rev. Lett. (2019)

Electronic devices continue to shrink as computer engineers squeeze ever more transistors and other components onto computing chips. Researchers have realized single-atom transistors, but single-atom data storage elements are still in their design phase. To become reality, researchers have to overcome obstacles such as devising methods to manipulate the magnetic field of an individual atom, an achievement that would allow atoms to be used for information storage. Kai Yang at the IBM Almaden Research Center in California and colleagues have now done exactly that, demonstrating a technique for tuning an atom’s magnetic field strength over 4 orders of magnitude. Yang says that their technique could be used to precisely adjust the magnetic properties of a variety of systems, including molecules and magnetic nanoparticles.

The team used an iron atom on the end of a scanning tunneling microscope (STM) tip to adjust the magnetic field of a titanium atom sitting on a surface. As the iron atom—which has a fixed magnetic field—neared the titanium atom, the titanium was subjected to a magnetic force, which caused its magnetic field to align with the iron’s. This force is similar to that between two fridge magnets brought into close proximity, and it is known as the “exchange interaction.” Through quantum effects, the exchange interaction also influenced the strength of the titanium atom’s magnetic field, with a stronger interaction leading to a stronger field. The team showed that they could increase the interaction strength by moving the STM tip closer to the titanium atom. While the technique could be used to write information in magnetic memory devices, Yang says that instead they plan to use it to study exotic quantum states in systems of magnetic atoms.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


More Features »


More Announcements »

Subject Areas

MagnetismCondensed Matter Physics

Previous Synopsis

Particles and Fields

How a Pentaquark is Put Together

Read More »

Next Synopsis

Fluid Dynamics

Making the Perfect Crêpe

Read More »

Related Articles

Synopsis: Flexing an Electron Gas
Condensed Matter Physics

Synopsis: Flexing an Electron Gas

Bending a stack of metal oxide sheets can alter the electrical resistance of a 2D electron gas that resides within. Read More »

Viewpoint: Polarons Get the Full Treatment
Materials Science

Viewpoint: Polarons Get the Full Treatment

A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. Read More »

Viewpoint: The “Sound” of Weyl Fermions
Condensed Matter Physics

Viewpoint: The “Sound” of Weyl Fermions

A prediction of a new heat-transport mechanism—called chiral zero sound—may explain recent observations of a “giant” thermal conductivity in Weyl semimetals. Read More »

More Articles