Synopsis: A “Quiet” Measurement of a Quantum Drum

A new technique allows for more precise measurements of a quantum oscillator’s time-varying displacement, with potential applications in quantum information.
Synopsis figure
R. D. Delaney et al., Phys. Rev. Lett. (2019); adapted by APS/Alan Stonebraker

Measuring the back and forth motion of tiny mechanical oscillators is important in many fields of physics, including optics, electromechanics, and quantum sensing. The precision of these measurements, however, is limited by the inherent uncertainty in a quantum object’s state, also known as quantum noise. A new technique developed by Robert Delaney and Konrad Lehnert of the University of Colorado, Boulder, and colleagues achieves an unprecedentedly “quiet” measurement, opening the door for important applications of small mechanical oscillators.

The team focused on the drumhead-like oscillations of a 15-𝜇m-wide aluminum disk whose motion can be decomposed into two quadratures—dimensionless versions of the oscillator’s displacement and momentum. The Heisenberg uncertainty principle dictates that measuring the two quadratures simultaneously would add noise to a measurement of the disk’s mechanical motion that is on par with the disk’s residual quantum motion at absolute zero (zero-point motion). The added noise can be avoided by measuring only one quadrature. But previous attempts at this approach suffered from loss of signal or made the oscillator’s motion unstable. Delaney, Lehnert, and their collaborators got around this problem by modifying an existing measurement technique to intentionally induce the instability in a controllable way. As a result, the noise introduced by their measurement was less than 15% of the disk’s natural zero-point motion, a reduction of roughly a factor of 6 over other techniques.

Small mechanical oscillators are important in everyday technology such as cell phones, and they are increasingly being integrated into technologies for quantum computing and quantum networks. Lehnert and his research group are investigating these applications of mechanical oscillators, in which precise position measurements would be essential.

This research is published in Physical Review Letters.

–Meredith Fore

Meredith Fore is a freelance science writer based in Seattle, Washington.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Related Articles

Viewpoint: Soft Metal Gains Hulk-Like Strength
Condensed Matter Physics

Viewpoint: Soft Metal Gains Hulk-Like Strength

When rapidly compressed to planetary-core pressures, lead—a soft metal—becomes 10 times stronger than high-grade steel. Read More »

Synopsis: Noisy Synchrotron? Machine Learning Has the Answer
Optics

Synopsis: Noisy Synchrotron? Machine Learning Has the Answer

Machine-learning algorithms could allow researchers to substantially reduce unwanted fluctuations in the widths of the electron beams produced at synchrotrons. Read More »

Viewpoint: Making Diamond Qubits Talk to Light
Semiconductor Physics

Viewpoint: Making Diamond Qubits Talk to Light

A solid-state qubit satisfies three key requirements of a building block for a quantum network. Read More »

More Articles