Synopsis: Imaging Water Molecules on Metal

Atomic force microscopy reveals the structure of a single layer of water molecules adsorbed on a nickel surface, potentially expanding our understanding of catalysis.  
Synopsis figure
A. Shiotari/University of Tokyo

Nanoscale interactions between water molecules and a metal surface determine the metal’s affinity to liquids, its electrochemical properties, and its utility as a catalyst. However, testing model predictions is difficult. Scanning tunneling microscopy (STM) can visualize the water layer without disrupting the fragile bonds connecting the molecules, but it can’t always resolve single molecules. Noncontact atomic force microscopy (AFM), meanwhile, has been used mainly to visualize organic molecules, making its ability to nondestructively image water bonding networks uncertain. By combining both techniques, Akitoshi Shiotari, at the University of Tokyo, and colleagues acquired single-molecule-resolution images of water networks on a nickel surface. The researchers expect their work to prompt many more ultrahigh-resolution imaging studies of water adsorption on metals.

The team exposed a single crystal of nickel to water vapor at 78 K, remobilized the water molecules by warming the sample to 150 K, then cooled it again for imaging. STM images showed that, during annealing, the water molecules arranged themselves into monolayer islands whose periodicity matched the underlying structure of the nickel. AFM images revealed that these islands comprised a network of five-, six-, and seven-sided rings formed from hydrogen bonds between the water molecules. Subsequent force measurements confirmed that the intermolecular structure was not damaged by the imaging process.

The researchers also studied water adsorption at a single-atom step on the nickel surface. They found that the water molecules formed a combination of pentagonal and octagonal rings to accommodate the topography of this defect. Step edges like this are important sites for catalysis, so understanding how they interact with water molecules could eventually improve the yield of, for example, catalytic methods of hydrogen production.

This research is published in Physical Review Materials.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


More Features »


More Announcements »

Subject Areas

NanophysicsAtomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Three-Body Interactions, Not So Universal After All
Atomic and Molecular Physics

Synopsis: Three-Body Interactions, Not So Universal After All

Precision measurements with ultracold gases provide evidence that three-body bound states depend on atom-specific two-body interactions. Read More »

Synopsis: A Time Crystal Without a Driver
Quantum Physics

Synopsis: A Time Crystal Without a Driver

A calculation shows that an elusive, isolated quantum time crystal may not be far from reality.   Read More »

Synopsis: A New Negative Ion Takes the Cooling Spotlight
Atomic and Molecular Physics

Synopsis: A New Negative Ion Takes the Cooling Spotlight

Measurements of the electron binding energy in the negative thorium ion suggest that it may be a good candidate for laser cooling. Read More »

More Articles