Synopsis: Data Mining for a Graphene Cousin

Researchers have searched a crystallographic database to uncover 92 solids that should be easy to exfoliate into two-dimensional sheets with potentially useful electronic properties.
Synopsis figure
Courtesy S. Lebègue /CNRS

Graphite was used for years in lubricants, pencils, and batteries before researchers tried to separate it into graphene, a one-atom-thick layer of carbon atoms with enormous potential in electronics. In hindsight, could there be other solids like graphite that have simply been missed? To help identify them, Sébastien Lebègue, of the French National Center for Scientific Research (CNRS) in Nancy, and his colleagues have mined a vast database of crystal structures and pinpointed 92 they believe can be easily exfoliated into atomically-thin layers. As reported in Physical Review X, several of these materials could have technological applications.

Graphite peels easily because its atoms are strongly bonded in one plane but weakly bonded between these planes. Lebègue et al. identified common geometrical traits of such materials, including a large separation between planes of atoms and an atomic packing density that is neither too high (as in metals) nor too low (as in molecular solids). They used these traits to design a search algorithm that sifted through thousands of solids in the Inorganic Crystal Structure Database, looking for a match.

The search turned up familiar materials including graphite (thankfully), its structural cousin hexagonal boron nitride, and a family of materials called the transition-metal dichalcogenides. The real potential lies in those 40 tagged compounds with strongly bonded 2D sheets whose properties haven’t yet been studied in depth. According to the authors’ calculations, several of these materials have 2D layers that are semiconducting with a moderately sized band gap, a property essential for making transistors and one that even graphite lacks. – Jessica Thomas

Correction (9 July 2013): The Synopsis incorrectly stated that the materials FeSe and LiFeAs were dichalcogenides. This has been corrected.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Next Synopsis

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

More Articles