Synopsis: Data Mining for a Graphene Cousin

Researchers have searched a crystallographic database to uncover 92 solids that should be easy to exfoliate into two-dimensional sheets with potentially useful electronic properties.
Synopsis figure
Courtesy S. Lebègue /CNRS

Graphite was used for years in lubricants, pencils, and batteries before researchers tried to separate it into graphene, a one-atom-thick layer of carbon atoms with enormous potential in electronics. In hindsight, could there be other solids like graphite that have simply been missed? To help identify them, Sébastien Lebègue, of the French National Center for Scientific Research (CNRS) in Nancy, and his colleagues have mined a vast database of crystal structures and pinpointed 92 they believe can be easily exfoliated into atomically-thin layers. As reported in Physical Review X, several of these materials could have technological applications.

Graphite peels easily because its atoms are strongly bonded in one plane but weakly bonded between these planes. Lebègue et al. identified common geometrical traits of such materials, including a large separation between planes of atoms and an atomic packing density that is neither too high (as in metals) nor too low (as in molecular solids). They used these traits to design a search algorithm that sifted through thousands of solids in the Inorganic Crystal Structure Database, looking for a match.

The search turned up familiar materials including graphite (thankfully), its structural cousin hexagonal boron nitride, and a family of materials called the transition-metal dichalcogenides. The real potential lies in those 40 tagged compounds with strongly bonded 2D sheets whose properties haven’t yet been studied in depth. According to the authors’ calculations, several of these materials have 2D layers that are semiconducting with a moderately sized band gap, a property essential for making transistors and one that even graphite lacks. – Jessica Thomas

Correction (9 July 2013): The Synopsis incorrectly stated that the materials FeSe and LiFeAs were dichalcogenides. This has been corrected.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Next Synopsis

Related Articles

Synopsis: Tackling Electronic Correlations
Condensed Matter Physics

Synopsis: Tackling Electronic Correlations

A new “first principles” simulation method could broaden the range of strongly correlated materials whose properties can be theoretically predicted. Read More »

Viewpoint: Hydrogen Hides Surprises at High Pressure
Condensed Matter Physics

Viewpoint: Hydrogen Hides Surprises at High Pressure

Measurements of the melting curve of hydrogen at unprecedentedly high pressures call for a refinement of the theories describing the material. Read More »

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains
Materials Science

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains

Simulations of porous materials exhibit internal stress patterns like those in granular materials, despite the fact that these two systems are practically “negative images” of each other. Read More »

More Articles