Synopsis: Planting a Liquid-Crystal Garden

Flower-shaped patterns in liquid crystals could be used to make small-scale optical elements.
Synopsis figure
D. A. Beller et al., Phys. Rev. X (2013)

Early opticians spent months polishing lenses that could focus light into a clear image. But these days, nanotechnology may offer much faster ways to assemble, one molecule at a time, perfect optical components. In Physical Review X, Daniel Beller and his colleagues at the University of Pennsylvania in Philadelphia report they can use micro- and nano-sized particles to mold liquid crystals into light-focusing elliptical domains. Refining their recipe could lead to unconventional ways of making small-scale elements for guiding and sensing light.

The rod-shaped molecules in liquid crystals only transmit light along their long axis, a property that makes the materials useful in computer and TV displays. In the “smectic A” phase of a liquid crystal, the molecules both organize into parallel layers and orient themselves perpendicular to the layers. Depending on the chemistry of the molecules and the surfaces of the container that holds them, these layers can be bent into a variety of shapes that have unusual optical properties.

Beller and his colleagues have focused on a recently discovered structure where the layers curve around multiple ellipses that fan out radially from a common point, like the petals on a daisy. Since each “petal” can act as a focusing element for light, these structures could be used to concentrate light at an intense central point. But researchers have been uncertain about how to control the eccentricity of the elliptical petals, which determines the geometry of the whole smectic layer arrangement. Beller and his colleagues now show that anchoring a layer of the liquid crystals on at least one curved surface—such as a micrometer-sized bead or patches of nanoparticles on an underlying substrate—provides the necessary level of control, which they can predict with a mathematical model. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Soft MatterOptoelectronics

Previous Synopsis

Next Synopsis

Nanophysics

Going Against the Flow

Read More »

Related Articles

Synopsis: A Laser Steers Electrons Inside Graphene
Optoelectronics

Synopsis: A Laser Steers Electrons Inside Graphene

Orthogonally polarized laser pulses produce a controllable, variable current whose direction can be reversed in less than a femtosecond. Read More »

Synopsis: Reversible Self-Assembly of Macroscopic “Polymers”
Soft Matter

Synopsis: Reversible Self-Assembly of Macroscopic “Polymers”

Reconfigurable materials step closer to reality with a colloidal system that self-assembles, disassembles, and reassembles into polymer-like chains in response to temperature changes. Read More »

Synopsis: Knotted Loops Fall Flat
Biological Physics

Synopsis: Knotted Loops Fall Flat

A knotted loop of metal beads—mimicking a knotted molecule—organizes into a flat horizontal ring when drifting down through a viscous fluid. Read More »

More Articles