Synopsis: Clearer Quantum Vision

The use of quantum states of light can enhance the resolution of bioimaging techniques.
Synopsis figure
Michael Taylor/University of Queensland

Unbreakable encryption schemes or quantum computers that outperform classical ones are the most-talked-about potential applications of quantum physics. But quantum effects could also help clear the vision of microscopes looking at the interior of living cells. As reported in Physical Review X, a new experimental scheme, based on the use of carefully engineered quantum states of light, allows researchers to map subcellular structures with a spatial resolution of about 10 nanometers.

Michael Taylor at the University of Queensland, Australia, and co-workers have developed a quantum imaging method that utilizes so-called squeezed light in photonic force microscopy (PFM). PFM is an imaging method in which a nanoscale particle is embedded in a cell and moved with optical tweezers to explore the cell interior. By measuring the light scattered by the nanoparticle at different positions, the technique provides information about the local environment around the probe, including its specific interactions with molecules like membrane proteins and other cellular structures.

The resolution of PFM depends ultimately on two factors: the particle size and the measurement’s signal-to-noise, which limits the precision with which the particle position can be determined. Using squeezed states of light—quantum states that have better noise properties than classical light—Taylor et al. were able to mitigate the impact of noise. Experiments on yeast cells showed the resolution was enhanced by 14% compared to experiments with classical light, but the use of better squeezed-light sources could lead to an order-of-magnitude improvement, potentially allowing angstrom resolution in PFM imaging. – Matteo Rini


More Features »


More Announcements »

Subject Areas

OpticsQuantum Physics

Previous Synopsis

Nonlinear Dynamics

Fighting for Attention

Read More »

Next Synopsis

Related Articles

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage
Semiconductor Physics

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage

Researchers designed an atomically thin mirror with electronically switchable reflectivity that could be useful in optoelectronic circuits.   Read More »

Viewpoint: Spin Gyroscope is Ready to Look for New Physics

Viewpoint: Spin Gyroscope is Ready to Look for New Physics

An enhanced version of a magnetometer based on atomic spins could be used to search for theoretically predicted exotic fields with ultrahigh sensitivity. Read More »

Viewpoint: X-Ray Probe Targets Interfaces

Viewpoint: X-Ray Probe Targets Interfaces

A new spectroscopy technique employs x rays from a free electron laser to measure the properties of interfaces that may be hidden within a material. Read More »

More Articles