Synopsis: Homing in on Primordial Gravitational Waves

An analysis of data spanning 29 orders of magnitude in gravitational-wave frequency provides insights into the physics of the early cosmos.

Gravitational waves—the distortions in spacetime first spotted by the LIGO Scientific Collaboration in September 2015—are fundamentally distinct from electromagnetic waves. But like their electromagnetic counterparts, they can come in a broad range of frequencies. Different experiments to detect them target specific frequency bands, each of which links to particular wave sources, such as the two colliding black holes that generated the signal detected by LIGO. In a study that combines data across an unprecedented swath of gravitational-wave frequencies, Paul Lasky from Monash University, Australia, and colleagues now put stringent bounds on a source that should produce a signal in all experiments: quantum fluctuations in the early cosmos.

Researchers believe that a fraction of a second after the big bang, quantum fluctuations of the gravitational field were magnified by a rapid expansion of space called inflation, generating a primordial background of gravitational waves. Lasky and co-workers pulled together data from several experiments that should carry direct or indirect imprints of this background. Spanning 29 orders of magnitude in gravitational-wave frequency, these data included observations of the cosmic microwave background radiation obtained by the Planck satellite and the BICEP2 experiment, of the arrival times of pulses from rotating neutron stars, and of mirror displacements in ground-based interferometers such as LIGO. The combined data allowed the authors to put stringent bounds on the slope of the background’s energy spectrum, which quantifies how the energy density of the waves varies with frequency. From these bounds, they were able to rule out exotic models of inflation that produce large slopes.

This research is published in Physical Review X.

–Ana Lopes


Features

More Features »

Announcements

More Announcements »

Subject Areas

CosmologyAstrophysicsGravitation

Previous Synopsis

Materials Science

Topological Origami

Read More »

Next Synopsis

Condensed Matter Physics

Electron–Phonon Affair Comes to Light

Read More »

Related Articles

Synopsis: Wind Gusts Could Explain Gamma-Ray Flares
Astrophysics

Synopsis: Wind Gusts Could Explain Gamma-Ray Flares

A mysterious gamma-ray emission from the Crab Nebula—a giant interstellar cloud of gas—may be due to fluctuations in the wind blown out from the pulsar in the nebula’s center. Read More »

Synopsis: Relativity Survives Scrutiny, Again
Gravitation

Synopsis: Relativity Survives Scrutiny, Again

Two independent studies show no evidence that a fundamental symmetry in relativity, known as Lorentz invariance, breaks down. Read More »

Synopsis: Connecting Higgs to Dark Matter
Particles and Fields

Synopsis: Connecting Higgs to Dark Matter

New theoretical work places more stringent constraints on dark matter properties derived from particle physics experiments. Read More »

More Articles