Synopsis: Homing in on Primordial Gravitational Waves

An analysis of data spanning 29 orders of magnitude in gravitational-wave frequency provides insights into the physics of the early cosmos.

Gravitational waves—the distortions in spacetime first spotted by the LIGO Scientific Collaboration in September 2015—are fundamentally distinct from electromagnetic waves. But like their electromagnetic counterparts, they can come in a broad range of frequencies. Different experiments to detect them target specific frequency bands, each of which links to particular wave sources, such as the two colliding black holes that generated the signal detected by LIGO. In a study that combines data across an unprecedented swath of gravitational-wave frequencies, Paul Lasky from Monash University, Australia, and colleagues now put stringent bounds on a source that should produce a signal in all experiments: quantum fluctuations in the early cosmos.

Researchers believe that a fraction of a second after the big bang, quantum fluctuations of the gravitational field were magnified by a rapid expansion of space called inflation, generating a primordial background of gravitational waves. Lasky and co-workers pulled together data from several experiments that should carry direct or indirect imprints of this background. Spanning 29 orders of magnitude in gravitational-wave frequency, these data included observations of the cosmic microwave background radiation obtained by the Planck satellite and the BICEP2 experiment, of the arrival times of pulses from rotating neutron stars, and of mirror displacements in ground-based interferometers such as LIGO. The combined data allowed the authors to put stringent bounds on the slope of the background’s energy spectrum, which quantifies how the energy density of the waves varies with frequency. From these bounds, they were able to rule out exotic models of inflation that produce large slopes.

This research is published in Physical Review X.

–Ana Lopes


Features

More Features »

Announcements

More Announcements »

Subject Areas

CosmologyAstrophysicsGravitation

Previous Synopsis

Materials Science

Topological Origami

Read More »

Next Synopsis

Condensed Matter Physics

Electron–Phonon Affair Comes to Light

Read More »

Related Articles

Synopsis: 2D Maps of Solar Wind
Astrophysics

Synopsis: 2D Maps of Solar Wind

Maps of solar wind velocities derived from satellite images of the Sun’s corona could help researchers improve solar wind models. Read More »

Synopsis: Ideal Mergers for Measuring Cosmic Expansion
Cosmology

Synopsis: Ideal Mergers for Measuring Cosmic Expansion

Among gravitational-wave sources, the merger of a neutron star and a black hole may provide the most precise way to measure how fast the Universe is expanding. Read More »

Synopsis: A Closer Look at Cosmic Dust
Cosmology

Synopsis: A Closer Look at Cosmic Dust

Simulations provide a detailed picture of the emission of dust grains in our Galaxy, which is known to interfere with measurements of the cosmic microwave background. Read More »

More Articles