Synopsis: One Device, Two Holograms

Researchers have demonstrated a device that can project two distinct holographic images when illuminated at different angles.  
Synopsis figure
S. M. Kamali et al., Phys. Rev. X (2017)

Thin optical devices typically perform the same function when illuminated from different angles. Holograms, for instance, will project the same image regardless of the angle of illumination. Now, researchers have designed two optical devices, both of which respond distinctly to light incident at two different illumination angles. The first is a hologram that displays different images when illuminated head on and at 30. The second is a diffraction grating with different effective grating periods for the two angles. The researchers suggest that these types of devices could encode the functions of independent optical components—a grating, lens, hologram, or the like—at different illumination angles, behaving as a multifunctional optical system.

The devices, developed by Andrei Faraon from the California Institute of Technology, Pasadena, and colleagues, are “metasurfaces” consisting of a square array of U-shaped silicon elements sitting on a supporting layer. The height, width, depth, and length of the two U arms are varied across the array to form a desired pattern. The pattern is chosen so that polarized light incoming at angles of 0 and 30 undergoes different phase shifts as it interacts with the metasurface. This creates independent phase profiles for these two illumination angles, allowing each of the devices to have two completely different optical outputs.

In this way, the team created a diffraction grating whose effective grating period varies by ten wavelengths for the two incidence angles. They also created a hologram that projects the logo of Caltech for illumination at 0 and that of LMI—one of Caltech’s research centers—for illumination at 30. So far, the team has only encoded functions at two illumination angles into the devices, but they suggest that other metamaterial patterns could increase this number.

This research is published in Physical Review X.

–Katherine Wright

Katherine Wright is a Contributing Editor for Physics.


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

Atom Interferometers at Full Tilt

Read More »

Next Synopsis

Atomic and Molecular Physics

Fermions Trapped in Boson Gas

Read More »

Related Articles

Focus: A Tiny Engine Powered by Light and Liquid Physics
Statistical Physics

Focus: A Tiny Engine Powered by Light and Liquid Physics

A micrometer-sized sphere trapped by optical tweezers in a liquid, under the right conditions, orbits rapidly around the laser beam—creating a potential micromixing device. Read More »

Viewpoint: Intense Laser Sheds Light on Radiation Reaction
Plasma Physics

Viewpoint: Intense Laser Sheds Light on Radiation Reaction

Experimentalists have used ultraintense laser light to explore a fundamental problem in quantum electrodynamics: the response of an accelerated electron to the radiation it emits. Read More »

Synopsis: Detecting Energy-Time Entanglement
Quantum Information

Synopsis: Detecting Energy-Time Entanglement

A new detection system directly observes a type of entanglement in which a photon’s energy is correlated with the time its partner is detected.  Read More »

More Articles