Synopsis: A Doubly Curved Light Wave

Using a combination of light-bending techniques, researchers have demonstrated a light beam that accelerates in a curved space.
Synopsis figure
T. Patsyk and M. Bandres/Technion

Light typically travels in a straight line, but physicists have found several ways to make light beams curve. A new experiment adds an extra twist by combining two separate light-bending phenomena: one involving the curved space known from general relativity, the other based on shape-preserving accelerating wave packets developed in optics. Mordechai Segev and his colleagues from the Technion – Israel Institute of Technology are the first to experimentally observe an accelerating beam in curved space.

Making light curve has become a hot topic recently. For some scientists, the interest is in emulating general relativity through the confinement of light in a curved geometry, such as an undulating waveguide or round piece of a glass. For others, the aim is to create a curving light beam for manipulating particles, shaping plasma filaments, or micromachining materials. In this latter case, the beam as a whole (defined by its center of mass) doesn’t curve, but interference effects between different lobes of the beam make the brightest lobe follow a curving path, as if it were accelerating under some force.

In their experiment, Segev and colleagues created a curved-space landscape by cutting the top off of a 6-cm-wide light bulb. They then directed a specifically shaped accelerating beam into this hemispheric glass waveguide. The team imaged the path of the light, and—as expected from their simulations—they found that the brightest lobe of the beam bent away from the shortest-distance path, which is the trajectory light would normally take in the curved glass. The researchers believe this type of experiment will offer new opportunities for emulating general relativity phenomena in optical settings and also open new possibilities for controlling light in nonplanar 3D settings.

This research is published in Physical Review X.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

Twisted Cavity Is a One-Way Light Path

Read More »

Next Synopsis

Semiconductor Physics

Plasmon Thermometers for Silicon

Read More »

Related Articles

Viewpoint: A New Angle on Mapping the Refractive Index

Viewpoint: A New Angle on Mapping the Refractive Index

3D maps of a sample’s refractive index—used in some biomedical tests—can be directly derived from angle-dependent measurements of light scattering from the sample. Read More »

Focus: <i>Video</i>—Juggling Droplets

Focus: Video—Juggling Droplets

A pair of microscopic liquid droplets suspended by a laser beam can execute a surprisingly stable “juggling” pattern for up to 30 minutes. Read More »

Focus: How to Study a Speck of Dust

Focus: How to Study a Speck of Dust

A new technique allows the capture and study of a single dust particle just 34 nanometers wide, nearly 10 times smaller than the previous limit. Read More »

More Articles