Synopsis: Making Quantum Cryptography Safe and Practical

A theoretical study suggests that “continuous variable” quantum key distribution—an approach to quantum cryptography compatible with telecom networks—could be made absolutely secure against hacking.

Most protocols for quantum key distribution (QKD)—a quantum cryptography technique—encode an encryption key in discrete quantum states, such as the two orthogonal polarizations of a photon. While some QKD protocols are immune to hacking, they require the detection of single photons, an ability not available in existing telecommunication networks. Now, Anthony Leverrier at Inria in France and colleagues have provided theoretical arguments for the security of continuous-variable (CV) QKD, a version that relies on interferometric detection schemes widely used in high-speed telecom networks. The result suggests that CVQKD holds potential for large-scale deployment in such networks.

Instead of discrete polarization states, CVQKD uses coherent quantum states that can be encoded in continuous variables like the amplitude and phase of an optical signal traveling through a fiber. Previous security proofs using this encoding, however, required these coherent states to be randomly chosen from an infinite set of states derived from a continuous distribution, which can’t be accurately prepared in real-world systems.

Leverrier and his team analyzed a CVQKD protocol that uses only four quantum states, which can be reliably prepared with available optical technology. Their analysis shows that this protocol could securely transmit a secret key over distances ranging from 50 to 150 km, depending on the noise in the transmission channel. The team acknowledges that their proof has an important limitation: It assumes the receiver has perfect knowledge of the channel’s noise. The researchers, however, believe that they could soon remove this limitation.

This research is published in Physical Review X.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Quantum Information

Counting Phonons One by One

Read More »

Next Synopsis

Condensed Matter Physics

Flexing an Electron Gas

Read More »

Related Articles

Synopsis: Entanglement in Broad Daylight
Quantum Information

Synopsis: Entanglement in Broad Daylight

Photons entangled in high dimensions are more resilient to noise, making them ideal for quantum communication applications. Read More »

Viewpoint: Fluxonium Steps up to the Plate
Quantum Information

Viewpoint: Fluxonium Steps up to the Plate

A decade-old alternative to the leading superconducting qubit exhibits the coherence times needed for applications. Read More »

Viewpoint: Making Diamond Qubits Talk to Light
Semiconductor Physics

Viewpoint: Making Diamond Qubits Talk to Light

A solid-state qubit satisfies three key requirements of a building block for a quantum network. Read More »

More Articles