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We present cosmological parameter constraints from a blind joint analysis of three two-point correlation
functions measured from the Year 3 Hyper Suprime-Cam (HSC-Y3) imaging data, covering about
416 deg2, and the SDSS DR11 spectroscopic galaxies spanning the redshift range [0.15, 0.70]. We
subdivide the SDSS galaxies into three luminosity-cut, and therefore nearly volume-limited samples
separated in redshift, each of which acts as a large-scale structure tracer characterized by the measurement
of the projected correlation function, wpðRÞ. We also use the measurements of the galaxy-galaxy weak-
lensing signal ΔΣðRÞ for each of these SDSS samples which act as lenses for a secure sample of source
galaxies selected from the HSC-Y3 shape catalog based on their photometric redshifts. We combine these
measurements with the cosmic shear correlation functions, ξ�ðϑÞmeasured for our HSC source sample. We
model these observables with the minimal bias model of the galaxy clustering observables in the context of
a flat ΛCDM cosmology. We use conservative scale cuts, R > 12 and 8h−1 Mpc for ΔΣ and wp,
respectively, where the minimal bias model is valid, in addition to conservative prior on the residual bias in
the mean redshift of the HSC photometric source galaxies. We present various validation tests of our model
as well as analysis methods. Our baseline analysis yields S8 ¼ 0.775þ0.043

−0.038 (68% C.I.) for the ΛCDM
model, after marginalizing over uncertainties in other parameters. Our value of S8 is consistent with that
from the Planck 2018 data, but the credible interval of our result is still relatively large. We show that
various internal consistency tests based on different splits of the data are passed. Our results are statistically
consistent with those of a companion paper, which extends this analysis to smaller scales with an emulator-
based halo model, using ΔΣðRÞ and wpðRÞ down to R > 3 and 2h−1 Mpc, respectively.

DOI: 10.1103/PhysRevD.108.123521

I. INTRODUCTION

Wide-area imaging surveys are powerful tools for
constraining the composition of the Universe and the
growth history of cosmic structure. Motivated by this fact,
the international Subaru Hyper Suprime-Cam (HSC) col-
laboration consisting of scientists mainly from Japan,
Taiwan, and Princeton University has carried out a wide-
area, multiband imaging survey with HSC, covering about
1; 100 deg2 [1,2]. In particular, comparing the measure-
ments of weak-lensing effects due to large-scale structure in
the Universe with predictions from cosmological models
allows us to obtain precise estimates of cosmological
parameters [3–8]. Interestingly, however, the majority
of large-scale structure probes infer a lower value of σ8
or S8 ≡ σ8ðΩm=0.3Þ0.5, a parameter that characterizes the
amplitude of the matter clustering on scales of 8h−1 Mpc in
the Universe today, compared to that inferred from the
Planck cosmic microwave background data [9], albeit at
low statistical significance. If established at high statistical
significance, and after ruling out any systematic biases as
an origin, this so-called σ8 or S8 tension (see [10] for a
review) might be a consequence of new physics beyond the
standard ΛCDM model of the Universe.
Establishing or ruling out the S8 tension with cosmo-

logical datasets is, therefore, one of the most important
contemporary problems in modern cosmology. To do
this, we require high-precision, robust cosmology experi-
ments. Here by “high-precision”, we mean experiments
yielding small credible intervals (small error bars) on the

cosmological parameter of interest, here S8, and by
“robust”, wemean experiments that can provide an unbiased
estimate of the underlying true value of S8. This is the
direction the cosmology community is heading in the
coming decade.
In this paper, we model measurements from the Year 3

galaxy shape catalog of Subaru HSC (hereafter HSC-Y3)
and the spectroscopic SDSS DR11 galaxy catalog,
to perform a joint cosmological analysis of galaxy
clustering, galaxy-galaxy clustering and cosmic shear—
a 3 × 2pt analysis. This paper is an extension of Sugiyama
et al. [6] which used the Year 1 HSC (HSC-Y1) data of
about 140 deg2 to perform a joint cosmological analysis
of galaxy clustering and galaxy-galaxy weak-lensing
(2 × 2pt) analysis. In this paper, we use the HSC-Y3
catalog covering about 416 deg2, which is approximately
three times larger area than in HSC-Y1, and supplement the
2 × 2pt measurements with the cosmic shear correlation
functions to perform a joint analysis.
The main challenge in the use of galaxy clustering for

cosmological analyses lies in the relation between the
distribution of galaxies and that of matter (mainly dark
matter) in the large-scale structure—the so-called galaxy
bias uncertainty [11] (also see [12] for a review).
Observationally, galaxy-galaxy weak lensing, measured
from the cross-correlation of the positions of lens galaxies
with shapes of background galaxies, can be used to
measure the average matter distribution around lens gal-
axies, which, in turn, can be used to infer the galaxy bias
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when combined with the autocorrelation of galaxies in the
lens sample [5,13,14].
In order to carry out a cosmological analysis, we need a

theoretical model to describe our observables. However, it
is still very challenging to accurately model the galaxy bias
and its scale dependence from first principles due to
complex physical processes that are inherent to the for-
mation and evolution of galaxies. Cosmological perturba-
tion theory [12,15] provides an accurate modeling
framework to describe the clustering properties of galaxies.
In this paper, we utilize the minimal bias model to describe
the galaxy clustering observables. In this model, we model
the autocorrelation function of galaxies as ξggðrÞ ¼
b21ξ

NL
mmðrÞ and the cross-correlation function of matter

and galaxies as ξgmðrÞ ¼ b1ξNLmmðrÞ, where b1 is a linear
bias parameter and ξNLmmðrÞ is the nonlinear correlation
function of matter. The galaxy-galaxy weak-lensing and the
projected galaxy clustering correlation function probe the
line-of-sight projection of ξgmðrÞ and ξggðrÞ, respectively.
Their combination allows us to break degeneracies between
b1 and ξNLmm, the latter of which allows us to extract the
cosmological information. On sufficiently large length
scales, where gravity is the driving dominant force for
structure formation and local baryonic physics do not affect
the observables, the minimal bias model serves as a
phenomenologically accurate theoretical framework that
can be applied to any galaxy type. However, the model
breaks down on smaller scales where a complex, scale-
dependent galaxy bias appears.
The purpose of this paper is to obtain robust cosmo-

logical constraints from the 3 × 2pt cosmological analysis
using the minimal galaxy bias model and flat ΛCDM
cosmological model. We use the galaxy-galaxy weak
lensing and the projected correlation function of galaxies
measured on conservatively-chosen scales, where the
minimal bias model is safely valid. Furthermore, we will
show that the addition of the cosmic shear correlation
function can improve the cosmological constraints when
combined with the 2 × 2pt measurements. We will present
various validation tests of the minimal bias model using
mock 2 × 2pt signals that include different galaxy bias
models and other physical systematic effects. In addition,
we employ a nuisance parameter to model a possible
residual ensemble photometric redshift (hereafter photo-z)
error in the HSC source galaxies that are used for the
measurements and model of galaxy-galaxy weak-lensing
and cosmic shear signals, because ensemble photo-z
errors are one of the most important systematic effects in
weak-lensing measurements. A companion paper, Miyatake
et al. [16], indicates a nonzero residual photo-z error from the
analysis of the same weak-lensing data as is used in this
paper.Wewill also performvarious internal consistency tests
to check that our results remain consistent across various
splits of the data.

This paper is a companion paper to More et al. [17] and
Miyatake et al. [16]. The measurements, systematics and
covariance estimates for the 3 × 2pt signals are described in
More et al. [17] These signals are analyzed using two
different models in Miyatake et al. [16] and in this paper. In
the former case, we model the measured signals down to
smaller scales using an emulator-based halo-model frame-
work, where the galaxy bias is determined as an average
over the bias of halos weighted by the halo-occupation
probability of galaxies. The additional degrees of freedom
in the halo occupation distribution make it possible to
model the signals on scales below those used in this
paper [14,16]. The results presented in this paper are thus
complementary to those in the companion paper, Miyatake
et al. [16], which uses an emulator-based halo model to
estimate the cosmological parameters from the same
observables as those used in this paper, but down to smaller
scales. We will show that the results using different
theoretical models are consistent with each other. This
consistency strengthens our confidence in the cosmological
parameters inferred from our analyses, in particular that the
results are robust against contamination from possible
baryonic effects inherent in physical processes of galaxy
formation and evolution (including the assembly bias
effect).
In addition, there are two more companion papers,

Li et al. [18] and Dalal et al. [19] that perform cosmological
parameter analyses using the real- and Fourier-space tomo-
graphic cosmic shear analyses of the HSC-Y3 data,
respectively. The two 3 × 2pt analyses use the same blinded
catalog (as they use the same measurements but on different
scales), while the two cosmic shear analyses use entirely
independent blinded catalogs. These cosmological analyses
were led by different authors without comparing the
cosmological parameter results until after each analysis
was unblinded. We present the results without any change
after unblinding; any results or conclusions derived post-
unblinding are mentioned explicitly in the paper. For all
these analyses, we employ a conservative prior on any
residual errors on the true ensemble redshift distribution of
HSC galaxies beyond z≳ 0.7 to model possible residual
photo-z errors. All of these analysis choices were defined
during the blind phase of the analysis.
This paper is organized as follows. In Sec. II, we briefly

describe the data and measurement methods. In Sec. III, we
describe the theoretical model that we use to infer cosmo-
logical parameters for the flat ΛCDM model, our choice of
model for systematic effects, and the likelihood analysis
method. In Sec. IV, we describe the strategy we adopt to
perform a blind analysis. In Sec. V, we perform model
validation using different types of mock data vectors. In
Sec. VI we show the cosmological parameters inferred
from our 3 × 2pt analysis. Section VII is devoted to
conclusions and a discussion of our results.
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II. DATA AND MEASUREMENT

In this section we briefly describe the data and the
measurement methods. The details can be found in a
companion paper, More et al. [17].

A. HSC-Y3 data: Source galaxies for weak lensing

HSC is a wide-field prime focus camera on the 8.2m
Subaru Telescope [1,20–22]. The HSC Subaru Strategic
Program (HSC SSP) survey started in 2014, and used 330
Subaru nights to conduct a five-band (grizy) wide-area
imaging survey [2]. The combination of HSC’s wide field-
of-view (1.77 deg2), superb image quality (a median i-band
seeing FWHM of 0.600), and large photon-collecting power
makes it one of the most powerful instruments for weak-
lensing measurements. The HSC SSP survey consists of
three layers; Wide, Deep, and Ultradeep. The Wide
layer, which is designed for weak-lensing cosmology,
covers about 1; 100 deg2 of the sky with a 5σ depth of
i ∼ 26 (200 aperture for a point source). Since the i-band
images are used for galaxy-shape measurements in weak-
lensing analyses, they are preferentially taken under good
seeing conditions.
In this paper, we use the HSC three-year (hereafter

HSC-Y3) galaxy-shape and photo-z catalogs [23,24] con-
structed from about 90 nights of HSC Wide data taken
between March 2014 and April 2019. Both catalogs are
based on the object catalog produced by the data reduction
pipeline [25]. In the following subsections, we describe
details of the shape and photo-z catalogs.

1. HSC-Y3 galaxy-shape catalog

In this paper, we use the shape catalog from the
S19a internal data release which was processed with
hscPipe v7 [26]. There were a number of improvements
to the PSF modelling, image warping kernel, background
subtraction and bright star masks, which have improved the
quality of the shape catalog in Year 3 compared to the Year
1 shape catalog [23,24]. The detailed selection of galaxies
that form the shape catalog is presented in Li et al. [26].
Briefly, the shape catalog consists of galaxies selected from
the “full-depth full-color region” in all five filters. Apart
from some basic quality cuts related to pixel level infor-
mation, we select extended objects with an extinction
corrected cmodel magnitude i < 24.5, i-band SNR ≥ 10,
resolution> 0.3, > 5σ detection in at least two bands other
than i, a 1 arcsec diameter aperture magnitude cut of
i < 25.5, and a blendedness cut in the i-band of 10−3.8.
The original shape catalog contains more than 35 million

source galaxies covering 433 deg2. However, as described
in detail in More et al. [17], Dalal et al. [19], Li et al. [18],
we find a significant source of B-mode systematics in the
cosmic shear correlation functions for a ∼20 deg2 patch in
the GAMA09H region, and we remove this problematic
region from the following analysis. After removing this

∼20 deg2 region, we have the HSC area of 416 deg2, with
an effective weighted number density of 19.9 arcmin−2. It
is divided into six disjoint regions: the XMM, VVDS,
GAMA09H, WIDE12H, GAMA15H, and HECTOMAP
fields [see Fig. 2 in Ref. [26] ]. The shape measurements in
the catalog were calibrated using detailed image simula-
tions, such that the residual galaxy property-dependent
multiplicative shear estimation bias is less than ∼10−2.
Li et al. [26] also present a number of systematic tests and
null tests, and quantify the level of residual systematics in
the shape catalog that could affect the cosmological science
analyses carried out using the data. Given that Li et al. [26]
flag residual additive biases due to PSF model shape
residual correlations and star galaxy shape correlations
as systematics requiring special attention and marginaliza-
tion, we have included the effects of these systematics on
the cosmic shear measurements in our modeling scheme.

2. Secure source galaxy sample definition

The depth of the HSC-Y3 data enables us to define a
conservative sample of source galaxies that are at redshifts
well beyond those of the lens galaxies, for weak-lensing
measurements. In this paper we select three distinct
samples of lens galaxies from the database of spectroscopic
SDSS galaxies up to zl;max ¼ 0.7. To select background
galaxies, we use photometric redshift (hereafter photo-z)
estimates for each HSC galaxy. The three year shape
catalog is accompanied by a photometric redshift catalog
of galaxies based on three different methods [27] MIZUKI is
a template fitting-based photo-z estimation code. DEMPZ

and DNNZ, on the other hand, provide machine learning-
based estimates of the galaxy photo-z’s. Each of these
methods provides an estimate of the posterior distribution
of redshift for each galaxy, denoted as PðzsÞ. In this paper
we use the DEMPZ photo-z catalog as our fiducial choice.
Photo-z uncertainties are among the most important sys-
tematic effects in weak-lensing cosmology, and can cause
significant biases in the cosmological parameters if
unknown residual systematic errors in photo-z exist.
For the study of weak lensing, we define a sample of

background galaxies whose redshifts are physically well
beyond the maximum lens redshift zl;max. More specifically,
we choose source galaxies satisfying the following con-
dition [28–30]:Z

7

zl;maxþ0.05
PiðzsÞdzs ≥ 0.99; ð1Þ

where the maximum redshift (zl;max ¼ 0.7) is that of the
lens sample that we will use for the galaxy-galaxy lensing
measurements, and PiðzsÞ is the posterior photo-z distri-
bution for the ith HSC galaxy. Such cuts significantly
reduce the contamination of source galaxies that are
physically associated with the lens galaxies. With this
additional cut, our weak-lensing sample includes about
24 percent of the galaxies in the original catalog, with an

SUNAO SUGIYAMA et al. PHYS. REV. D 108, 123521 (2023)

123521-4



effective number density of 4.9 galaxies per sq. arcmin. The
mean redshift of the sample is hzsi ≃ 1.3. The resultant
source redshift distribution is shown in Fig. 3 of More
et al. [17].

B. Lens galaxy sample

We use the large-scale structure sample compiled as part
of the Data Release 11 (DR11)1 [31] of the SDSS-III BOSS
(Baryon Oscillation Spectroscopic Survey) project [32] for
measurements of the clustering of galaxies and as lens
galaxies for the galaxy-galaxy lensing signal measure-
ments. The lens galaxy sample used in this paper is the
same as that used in the first year analysis of HSC data
(Sugiyama et al. [6] and Miyatake et al. [14]). We describe
the resultant catalog here briefly.
The BOSS survey is a spectroscopic followup survey of

galaxies and quasars selected from the imaging data
obtained by the SDSS-I/II, and covers an area of approx-
imately 11; 000 deg2 [33] using the dedicated 2.5 m SDSS
Telescope [34]. Imaging data obtained in five photometric
bands (ugriz) as part of the SDSS I/II surveys [32,35–40].
were augmented with an additional 3; 000 deg2 in SDSS
DR9 to cover a larger portion of the sky in the southern
region [32,38–40]. These data were processed by the SDSS
photometric processing pipelines [41–43], and corrected
for Galactic extinction [44] to obtain a reliable photometric
catalog which serves as an input to select targets for
spectroscopy [32]. The resulting spectra were processed
by an automated pipeline to perform redshift determination
and spectral classification [45]. The BOSS large-scale
structure (LSS) samples are selected using algorithms
focused on galaxies in different redshifts; 0.15 < z <
0.35 (LOWZ) and 0.43 < z < 0.7 (CMASS).
We use three galaxy subsamples in three redshift bins:

“LOWZ” galaxies in the redshift range z in [0.15, 0.35] and
two subsamples of “CMASS” galaxies, hereafter called
“CMASS1” and “CMASS2”, respectively, which are
obtained by subdividing CMASS galaxies into two redshift
bins, [0.43, 0.55] and [0.55, 0.70], respectively. As shown in
Fig. 1 of Miyatake et al. [5], we define each of the
subsamples by selecting galaxies with i-band absolute
magnitudesMi − 5 log h < −21.5, −21.9 and −22.2 for the
LOWZ, CMASS1, and CMASS2 samples, respectively.
The comoving number densities of these samples for the
Planck cosmologicalmodel [9] are n̄g=½10−4ðh−1MpcÞ−3�≃
1.8, 0.74, and 0.45, respectively. These are a few times
smaller than the densities of the entire parent LOWZ and
CMASS samples. The resultant lens redshift distributions
are shown in Fig. 3 of More et al. [17].
As described in More et al. [17] in detail, as our three

clustering observables, we use the projected correlation
functions for the three subsamples measured from the entire

SDSS DR11 region of about 8; 300 deg2, and the galaxy-
galaxy lensing signal and the cosmic shear correlations
measured from the overlap 416 deg2 area of the HSC-Y3
data. More et al. [17] presented the results for various null
and systematic tests, which are used to define the scale cuts
used in this paper. The covariance matrices for our mea-
surements were computed using a suite of mock catalogs, as
described in that paper. We will use these three two-point
functions to constrain cosmological parameters.

III. ANALYSIS METHOD

In this section, we describe the theoretical model and the
analysis method we use in our cosmological analysis (also
see [6,13] for details). We also describe the blinding
strategy we adopt for our cosmological analysis and the
validation tests of the models/methods as well as the
internal consistency tests that we performed before
unblinding the results of our analysis.

A. Theoretical model

1. Projected correlation function: wpðRÞ
To model the projected autocorrelation, wp, and the

galaxy-galaxy lensing signal, ΔΣ, which are related to the
surrounding matter distribution for the LOWZ, CMASS1,
and CMASS2 galaxies, we adopt the “minimal bias”model
described in Ref. [13] (also see [6]). This model relates the
number density fluctuation field of galaxies to the matter
density fluctuation field via a linear galaxy bias parameter,
δg ¼ b1ðzlÞδm for each galaxy sample at a representative
redshift zl. Sugiyama et al. [13] demonstrated that the
minimal bias model can serve as a sufficiently accurate
model to recover the cosmological parameters without any
significant systematic bias, as long as the model is applied
to a sufficiently large scale; R > 8h−1 Mpc and 12h−1 Mpc
for wp and ΔΣ, respectively. Given that these conclusions
were based on the covariance matrix for HSC Y1 data, we
will validate the minimal bias model using mock catalogs
of galaxies in Sec. V using the covariance matrix for the
HSC-Y3 and SDSS data.
The projected autocorrelation function of galaxies,

wpðRÞ, is related to the three-dimensional real-space
correlation function ξgg such that

wpðR; zlÞ ¼ 2fRSDcorr ðR; zlÞ
Z

Πmax

0

dΠξgg
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ Π2
p

; zl
�
;

ð2Þ
where Πmax is the projection length along the line of sight,
and throughout this paper we employ Πmax ¼ 100h−1 Mpc
in the measurement [46]. Typically, the redshift-space
distortion (RSD) effects are expected to not contaminate
the projected correlation function due to integration along
the line-of-sight. But as we model the signal on scales R
approaching Πmax, we account for the residual RSDs1https://www.sdss.org/dr11/.
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using the Kaiser RSD factor [11]. This correction factor
fRSDcorr ðR; zlÞ depends on the lens redshift and on cosmo-
logical parameters, especially Ωm [see Eq. (48) in Ref. [46]
for the definition] [also see [14] ]. Using the minimal bias
model, we model the three-dimensional, real-space galaxy
correlation function as

ξggðr; zlÞ ¼ b1ðzlÞ2
Z

∞

0

k2dk
ð2π2ÞP

NL
mmðk; zlÞj0ðkrÞ; ð3Þ

where j0ðxÞ is the zeroth-order spherical Bessel function,
and b1ðzlÞ is the linear galaxy bias parameter for each SDSS
galaxy sample at the redshift zl. Throughout this paper, we
model the nonlinear matter power spectrum, PNL

mm, using
halofit [47] with the modification suggested by [48] for
the assumed cosmological model. While the galaxy cluster-
ing signal is also affected by magnification bias, we have
checked that its contribution is at the sub-percent level
compared to Eq. (2), and hence neglect it in our model.

Each of the lens samples lies in a redshift bin with finite
width, and the model signal must be evaluated by averaging
the signal within the redshift bin. In this paper, we instead
evaluate the model signal at a single representative redshift,
defined as the mean redshift of the lens galaxies within each
redshift bin. The representative redshift for the LOWZ,
CMASS1, and CMASS2 samples are z̄l ≃ 0.26, 0.51, and
0.63, respectively. We have checked that the difference
between the signal evaluated at the representative redshift
and the signal averaged within the redshift bin is at most
4% of the statistical error in each R bin, as long as we
assume the linear galaxy bias does not evolve within the
redshift bin.

2. Galaxy-galaxy weak lensing: ΔΣðRÞ
Our model for the galaxy-galaxy lensing signal has two

contributions,

FIG. 1. The cosmological constraint from the HSC Y3 data with the large-scale 3 × 2pt analysis carried out in this work, along with
the HSC Y3 small-scale 3 × 2pt analysis in Miyatake et al. [16] and external experiments: Planck 2018 [9], DES Y3 3 × 2pt [70], and
KiDS-1000 [8]. Here the marginal posterior distributions in one- or two-dimensional parameter space are shown for the main
cosmological parameters constrained in this work, Ωm, σ8, and S8 ≡ σ8ðΩm=0.3Þ0.5.
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ΔΣðRÞ ¼ ΔΣgGðRÞ þ ΔΣmagðRÞ: ð4Þ

The first term represents the standard galaxy-galaxy weak-
lensing contribution that arises from the average projected
matter density distribution around the lens galaxies. Using
the minimal bias model we model ΔΣgG for each of the
LOWZ, CMASS1, and LOWZ2 samples as

ΔΣgGðR; zlÞ ¼ b1ðzlÞρ̄m0

Z
∞

0

kdk
2π

PNL
mmðk; zlÞJ2ðkRÞ; ð5Þ

where J2ðxÞ is the second-order Bessel function, ρ̄m0 is the
mean matter density today, and the nonlinear matter power
spectrum PNL

mm and sample galaxy bias b1 are the same as
in Eq. (3).
The second term on the rhs of Eq. (4) represents magni-

fication bias, which arises from the cross-correlation between
the lensing magnification effect in the observed number
density field of lens galaxies and the lensing shear on the
HSC source galaxy shapes due to the foreground matter
density fluctuation along the same line-of-sight direction,

ΔΣmagðRÞ¼
Z

dzspsðzsÞ
Z

dzlplðzlÞfΔΣmagðR;zl;zsÞ; ð6Þ

where plðzlÞ and psðzsÞ are the redshift distributions of lens
and source galaxies, respectively, that are normalized asR
dzpiðzÞ ¼ 1 (i ¼ l or s). For psðzsÞ, we adopt the stacked

photo-z posterior distribution of source galaxies as our default
choice and will discuss the impact of systematic redshift
errors on our cosmology analysis. For plðzlÞ we can accu-
rately evaluate the distribution using spectroscopic redshifts
for lens galaxies. The integrand function, fΔΣmagðR; zl; zsÞ is
defined as

fΔΣmagðR;zl;zsÞ≡2ðαmag;l−1Þ

×
Z

∞

0

ldl
2π

Σcðzl;zsÞCκðl;zl;zsÞJ2
�
l
R
χl

�
;

ð7Þ

where χl is the comoving distance at the representative
redshift zl. αmag is a parameter to model the power-law slope
of the number counts of the lens galaxies around amagnitude
cut in each sample [see Eq. (10) and Fig. 2 in Ref. [5] for the
estimated value and error], and Σc is the critical surface
density defined as

Σcðzl; zsÞ ¼
1

4πG
χðzsÞ

χðzlÞχðzl; zsÞð1þ zlÞ
: ð8Þ

Throughout this paper we adopt natural units with c ¼ 1
for the speed of light. The angular power spectrum of the
lensing convergence field for galaxies at redshifts zl and zs is
defined as

Cκðl; zl; zsÞ ¼
Z

dχ
Wðχ; χlÞWðχ; χsÞ

χ2
PNL
mm

�
lþ 1=2

χ
; z

�
;

ð9Þ

where the lensing efficiency kernel is defined using
χs ¼ χðzsÞ as

Wðχ; χsÞ≡ 3

2
ΩmH2

0ð1þ zÞ χðχs − χÞ
χs

: ð10Þ

3. Cosmic shear correlation functions: ξ�
We model the two-point correlation functions of

source galaxy shapes as a sum of the following three
terms

ξ�ðϑÞ ¼ ξGG;�ðϑÞ þ ξGI;�ðϑÞ þ ξII;�ðϑÞ: ð11Þ

The first term is the “gravitational-gravitational” term (i.e.,
cosmic shear, “GG”), the second term is the “gravitational-
intrinsic” correlation (“GI”) [49] that arises in pairs of
galaxies for which some common large-scale structure
along the line of sight affects the intrinsic shapes of one of
the galaxies and results in a gravitational lensing shear on
the other, while the third term is the “intrinsic-intrinsic”
(“II”) IA contribution [50].
The GG term of Eq. (11) is defined in terms of the

cosmic shear power spectrum as

ξGG;�ðϑÞ ¼
Z

ldl
2π

CκðlÞJ0=4ðlϑÞ; ð12Þ

where the zeroth- and fourth-order Bessel functions are for
ξþ and ξ−, respectively. Cκ is the angular power spectrum
of the lensing convergence, defined as

CκðlÞ ¼
Z

dχ
q2ðχÞ
χ2

PNL
mm

�
lþ 1=2

χ
; z

�
; ð13Þ

where qðχÞ is the lensing efficiency kernel averaged over
the source redshift distribution defined as

qðχÞ ¼
Z

dzspsðzsÞWðχ; χsÞ: ð14Þ

In this paper, we use a single source sample, and hence we
have no tomographic cosmic shear signals.
To model the GI and II terms of Eq. (11), we employ the

nonlinear alignment model (NLA) [51],

CGIðlÞ ¼ 2

Z
dχ

FðχÞHðzÞpsðzÞqðχÞ
χ2

PNL
mm

�
lþ 1=2

χ
; z

�
;

ð15Þ
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CIIðlÞ ¼
Z

dχ

�
FðχÞHðzÞpsðzÞ

χ

�
2

PNL
mm

�
lþ 1=2

χ
; z

�
:

ð16Þ

Here following the conventional method in the literature
e.g., [3], we introduced the redshift- and cosmology-
dependent factor FðχÞ that relates the intrinsic galaxy ellip-
ticity and the gravitational tidal field and is parametrized as

FðχÞ ¼ −AIAC1ρc
Ωm

DþðzÞ
; ð17Þ

where AIA is a free parameter that describes the amplitude of
the NLA model, C1 ¼ 5 × 10−14h−2M−1

⊙ Mpc3 is a nor-
malization constant, ρc is the critical mass density at z ¼ 0,
and DþðzÞ is the linear growth factor normalized to unity at
z ¼ 0. Since we use the cosmic shear correlations for a
single sample of the source galaxies, i.e., no lensing
tomography, we employ a single parameter AIA to model
the IA contamination, and do not include a parameter to
model the redshift dependence of the IA effect.

B. Modeling residual systematic errors

In this section, we present a method to model possible
residual systematic effects in the measured signals. In our
method, we include these effects in the model predictions
rather than in the measured signals to keep the data vector
and the covariance invariant.

1. Residual systematic redshift uncertainty: Δzph
Residual systematic error in the mean redshift of the

HSC source galaxies is one of the most important system-
atic effects in weak-lensing measurements, i.e., ΔΣ and
ξ�ðϑÞ in our data vector. To study the impact of residual
redshift error, we introduce a nuisance parameter to
model the systematic error in the mean source redshift by
shifting the posterior distribution of source redshifts, given
as zest ¼ ztrue þ Δzph [5,52,53]. Please see Sec. IIIA2 in
Miyatake et al. [16] and Zhang et al. [54] for a justification
of our parametrization (Δzph) to model the impact of
residual source redshift uncertainty on the weak-lensing
observables. Therefore, we use the shifted PðzÞ distribution
to model the mean of the true redshift distribution as

ptrue
s ðzÞ ¼ pest

s ðzþ ΔzphÞ: ð18Þ

Thus, if Δzph > 0 or < 0, the true mean redshift of our
sources becomes lower or higher than what is anticipated
from the photo-z estimates, respectively.
For ΔΣ (Eq. (4), we first need to recompute the average

lensing efficiency hΣ−1
cr i and the weightwls using the shifted

redshift distribution: we define the correction factor as

fΔΣðΔzphÞ≡
P

lswlshΣ−1
c itruels =hΣ−1

c iestlsP
lswls

; ð19Þ

where the weight is given as wls ¼ wlwshΣ−1
c i2ls and wl and

ws are weights given in the HSC shape catalog and the
BOSS catalog, respectively [see Sec. IIB in Ref. [5] for the
definitions]. We compute the correction factor for each of
the three lens samples, LOWZ, CMASS1, and CMASS2.
In our method, we multiply the correction factor by the
model template of ΔΣ as

ΔΣcorrðR; zl;ΔzphÞ ¼ fΔΣðΔzph; zlÞΔΣðRjzlÞ: ð20Þ

Note that ΔΣ includes both the galaxy-galaxy weak
lensing and the magnification term in Eq. (4); ΔΣ ¼
ΔΣgG þ ΔΣmag, and we also use the shifted redshift
distribution of source galaxies to compute the magnifica-
tion term, ΔΣmag.

2

Similarly, for nonzero Δzph, we recompute the model
prediction for the cosmic shear correlation functions ξ�ðϑÞ
using the shifted redshift distribution of the source galaxies.

2. Correction for the reference cosmology used
in our measurement

In the measurements of wp and ΔΣ, we need to assume a
“reference” cosmology to convert the angular separation
between galaxies in the pair to the projected separation R,
and the redshift difference to the radial separation, Π. For
ΔΣ, we also need the reference cosmology to compute
hΣci−1, which is needed to convert the shear toΔΣ. In More
et al. [17], wherewe present themeasurements, we assume a
reference cosmology with Ωref

m ¼ 0.279, which is only the
relevant parameter for a flat ΛCDM model. However, the
reference cosmology generally differs from the underlying
true cosmology, and we need to correct for the discrepancy
in our cosmological parameter analysis.We followRef. [55]
in order to perform these corrections. We denote the cosmo-
logical parameters in the parameter inference as C and the
reference cosmological parameters for the measurements
asCref . Similarly to Sec. III B 1, we can derive the correction
factors, by keeping the observables invariant. The correc-
tions for R and Π are obtained as follows:

R ¼ χðzl;CÞ
χðzl;CrefÞR

ref ;

Π ¼ Eðzl;CrefÞ
Eðzl;CÞ

Πref ; ð21Þ

Here EðzÞ≡HðzÞ=H0. Thus, we include the measurement
corrections in the theoretical templates of ΔΣ and wp as

2Note that the definition of fΔΣ is the inverse of the similar
correction factor fph used in the HSC-Y1 papers [5,6].
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ΔΣrefðRref ;zljC;ΔzphÞ¼ fΔΣðzljC;ΔzphÞΔΣðR;zljCÞ;

wpðRref ;zljCÞ¼ 2fRSDcorr ðR;zl;CÞ
Eðzl;CÞ
Eðzl;CrefÞ

×
Z

Πmax

0

dΠξgg
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2þΠ2
p

;zl;C
�
;

ð22Þ

whereR andΠ aregiven in termsofRref andΠref via the above
Eq. (21) and evaluated at the sampling points of Rref and
Πref used in the measurements. Note that we adopt Πmax ¼
½EðCfidÞ=EðCÞ�Πref

max ¼ ½EðCrefÞ=EðCÞ� × 100h−1 Mpc, as
we use the fixed Πfid

max ¼ 100h−1 Mpc in the measurement.
The overall correction factor for ΔΣ is defined as

fΔΣðzljC;ΔzphÞ≡
P

lswlshΣ−1
c itrue;Cls =hΣ−1

c iest;Cref

lsP
lswls

: ð23Þ

Now this correction factor accounts for both the effects of
residual photo-z errors (Δzph) and the use of the reference
cosmology.
Note that the theoretical templates of ξ�ðϑÞ for cosmic

shear correlation functions are not affected by the varying
cosmological models, as ξ� is given as a function of the
observed angular separation ϑ.

3. Residual-multiplicative shear bias

We account for possible residual biases on the weak-
lensing shear calibration, with a nuisance parameter
describing the residual multiplicative bias Δm,

ΔΣðR;ΔmÞ ¼ ð1þ ΔmÞΔΣðR;Δm ¼ 0Þ; ð24Þ

ξ�ðϑ;ΔmÞ ¼ ð1þ ΔmÞ2ξ�ðϑ;Δm ¼ 0Þ: ð25Þ

Since we use the same source sample for both the galaxy-
galaxy lensing and the cosmic shear measurements, we use
the same residual multiplicative bias parameter for ΔΣ
and ξ�.

4. Residual PSF modeling errors

Systematic tests of the HSC-Y3 shear catalog presented
in Li et al. [26] indicate that there are small residual
correlations between galaxy ellipticities and PSF elliptic-
ities resulting from imperfect PSF correction. Such residual
correlations could produce artificial galaxy shape-shape
correlations and hence bias the cosmic shear measure-
ments. Here we examine the impact of these systematics in
our cosmic shear measurements, assuming that the
measured galaxy shapes have an additional additive bias
given by

ϵðsysÞ ¼ αpsfϵ
p þ βpsfϵ

q: ð26Þ

The first term, referred to as PSF leakage, represents the
systematic error proportional to the PSF model ellipticity ϵp

due to the imperfection in the method used to correct the
galaxy shapes for the impact of the PSF. The second term
represents the systematic error associated with the differ-
ence between the model PSF ellipticity, ϵp, and the true PSF
ellipticity. This difference is estimated from individual
“reserved” stars ϵstar, i.e., ϵq ≡ ϵp − ϵstar [56]. A coherent
residual PSF ellipticity eq indicates an imperfect PSF
estimate, which should propagate to shear estimates of
galaxies.
When the observed galaxy ellipticity is contaminated

by ϵðsysÞ, these systematic terms cause an additional
contamination to the measured cosmic shear correlation
functions as

ξpsf;�ðϑÞ¼ α2psf ξ̂
pp
� ðϑÞþ2αpsfβpsf ξ̂

pq
� ðϑÞþβ2psf ξ̂

qq
� ðϑÞ; ð27Þ

where ξ̂pp� , ξ̂qq� and ξ̂pq� represent the autocorrelation of the
model PSF ellipticity ϵp�, the autocorrelation of the residual
PSF ellipticity ϵq�, and the cross-correlation of ϵp� and ϵq�,
respectively. The hat notation, “̂ ”, denotes the correlation
function measured from the HSC data using the model
PSF and the reserved stars (see More et al. [17]). The
proportional coefficients αpsf and βpsf are estimated by
cross-correlating ϵp� and ϵq� with the observed galaxy
ellipticities as

ξ̂gp� ðϑÞ ¼ αpsf ξ̂
pp
� ðϑÞ þ βpsf ξ̂

pq
� ðϑÞ;

ξ̂gq� ðϑÞ ¼ αpsf ξ̂
pqðϑÞ þ βpsf ξ̂

qq
� ðϑÞ; ð28Þ

where ξ̂gp� and ξ̂gq� are the measured cross-correlations
between galaxy ellipticities, used for the cosmic shear data
vector, and ϵp� and ϵq�. As shown in More et al. [17], we
found αpsf ¼ −0.0292� 0.0129 and βpsf ¼ −2.59� 1.65
for our fiducial source sample.
To take into account the impact of these additive shear

residuals on parameter inference, we add the contamination
term ξpsf;� [Eq. (27)] to the model cosmic shear correlation
function ξ� in Eq. (11) and then estimate parameters by
varying the parameters αpsf and βpsf with the Gaussian
priors with widths inferred from the above errors. Note
that the above PSF systematics causes additive shear bias,
and does not cause a bias in the galaxy-galaxy weak
lensing [57].
We note that the PSF systematics model we adopted here

is based on the second moments of PSF as done in Hamana
et al. [4], while the HSC-Y3 tomographic cosmic shear
analyses [18,19] use a PSF systematics model with addi-
tional terms including the fourth moments [54]. Because
the contamination from PSF systematics effects in the
cosmic shear signal is relatively small for high-redshift
HSC source galaxies compared to the signal at lower
redshift, the second-moment-based PSF systematics model
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is sufficient for our analysis. We explicitly validate the use
of our PSF systematics model in Appendix A by perform-
ing the cosmological parameter analysis on a synthetic data
vector including the measured PSF systematics up to the
fourth-moments in the synthetic cosmic shear data vector.

C. Summary: Theoretical template

For the convenience of the following discussion, here we
summarize the theoretical templates, explicitly showing
which parameters are used to model each of the theoretical
templates,

ΔΣtðRref ; zljC; b1ðzlÞ;Δzph;Δm; αmagðzlÞÞ ¼ ð1þ ΔmÞΔΣrefðRref ; zljC; b1ðzlÞ;Δzph; αmagðzlÞÞ;
× wt

pðRref ; zljC; b1ðzlÞÞ∶ Eqs: ð2Þ and ð22Þ;
ξt�ðϑjC;Δzph; AIA;Δm; αpsf ; βpsfÞ ¼ ð1þ ΔmÞ2ξ�ðϑjC;Δzph; AIAÞ þ ξ�;psfðϑjαpsf ; βpsfÞ: ð29Þ

ForΔΣref and wt
p, we compute these model predictions at

the sampling points of Rref for each of the LOWZ,
CMASS1, and CMASS2 samples at their representative
redshift. Here C denotes a cosmological model sampled
in parameter inference, and characterized by five
cosmological parameters for the flat ΛCDM model,
ðΩde; lnð1010AsÞ;ωc;ωb; nsÞ. b1ðzlÞ denotes the linear bias
parameter for the LOWZ, CMASS1, or CMASS2 sample,
and other parameters are nuisance parameters to model the
residual systematic errors in photo-z’s, magnification bias,
multiplicative shear bias, PSF modeling, and intrinsic
alignment. For our baseline analysis, we have 16 para-
meters in total; 16 ¼ 5ðCÞ þ 3 × 1ðb1Þ þ 8ðnuisanceÞ.

D. Bayesian inference: Likelihood and prior

To infer parameters θ from the measured clustering
observables, we compare a “data vector”, denoted as d̂,
to a “theoretical model template”, denoted as t. We
define the data vector from the measured signals of wp,
ΔΣ, and ξ� as

d≡ fŵpðRref
i jzlÞ; cΔΣðRref

j jzlÞ; ξ̂�ðϑkÞg; ð30Þ

where zl stands for the representative redshift of either
LOWZ, CMASS1, or CMASS2 sample. Here we empha-
size that the measured signals are sampled at discrete values

of of separation, Rref
i , Rref

j , and ϑk for ŵp, cΔΣ and ξ̂�,
respectively, where Rref

i and Rref
j are estimated from the

observed angular separations between galaxies in the pair
assuming the reference cosmology as we described above.
For wp, we use the signals in the range of

Rref ¼ ½8; 80�h−1 Mpc. The minimum scale cut is deter-
mined so that the minimum bias model fairly well describes
the signals [6,13], without being so affected by the strongly
nonlinear clustering. The maximum scale cut is determined
such that our constraint purely comes from the large scale
clustering amplitude, and does not include information
from the baryonic acoustic oscillations. The constraining
power of cosmological parameters is mainly from
scales around the minimum scale cut, where have higher

signal-to-noise ratios. We take 14 logarithmically-spaced
bins for each of the LOWZ, CMASS1, and CMASS2
samples. For ΔΣ, we use the signals in the range of
Rref ¼ ½12; 30�, [12, 40] or ½12; 80�h−1 Mpc for the
LOWZ, CMASS1, or CMASS2 sample, respectively.
The minimum scale cuts are determined by the same
reason as the wp case, while the maximum scale cuts are
determined based on the systematic tests, i.e., where we do
not find any significant signal of nonlensing ΔΣ× at scales
below the maximum cuts compared to the statistical errors.
The scale cuts give 4, 5, and 8 logarithmically-spaced radial
bins for the LOWZ, CMASS1, and CMASS2 samples,
respectively. For cosmic shear we use 8 angular separation
bins in the range of ϑ ¼ ½7.9; 50.1� arcmin for ξþðϑÞ, while
seven angular bins in ϑ ¼ ½31.6; 158� arcmin for ξ−ðϑÞ.
Thus we use 74 data points in total: 42ð¼ 3 × 14Þ for wp,
17ð¼ 4þ 5þ 8Þ for ΔΣ and 15ð¼ 7þ 8Þ for ξ�,
respectively.
For the theoretical template t, we construct the “model

vector” of the clustering correlation functions computed
using a set of model parameters θ within the flat ΛCDM
framework,

tðθÞ≡ fwt
pðRref

i ; zljθÞ;ΔΣtðRref
j zljθÞ; ξt�ðϑkjθÞg; ð31Þ

where the theoretical templates of clustering observables
(denoted by the superscript “t”) are computed at the
representative redshift of each lens sample, zl, using
Eq. (29). We use the publicly-available FFTLog code
developed in Ref. [58], which is a modified version from
the original code [59], to perform Hankel transforms in the
model-prediction calculations. We also use FFTlog to
compute the average of model prediction within a finite
radial bin width used in the measurements; Δ lnR ¼ 0.169
for wp, Δ lnR ¼ 0.246 for ΔΣ and Δ lnϑ ¼ 0.242
for ξ�.
We assume that the likelihood of the data vector

compared to the model vector follows a multivariate
Gaussian distribution:

SUNAO SUGIYAMA et al. PHYS. REV. D 108, 123521 (2023)

123521-10



lnLðdjθÞ ¼ −
1

2
½d − tðθÞ�TC−1½d − tðθÞ�; ð32Þ

where C is the covariance matrix of data vector (see
More et al. [17] for details), C−1 is the inverse matrix.
The covariance matrix is estimated in [17] from 1404ð¼
108 × 13Þ realizations of the mock signals [60,61]. When
we compute the inverse covariance in the likelihood, we
multiply the factor ð108 × 13 − 74 − 2Þ=ð108 × 13 − 1Þ ¼
0.95 to obtain the inverse covariance [62].3 The cross
covariance between galaxy-galaxy lensing and cosmic
shear is included because we use the same mock catalogs
for clustering, galaxy-galaxy lensing, and cosmic shear
measurements. Since the overlapping region between
the HSC-Y3 and SDSS DR11 survey footprints, which
has about 416 deg2, is much smaller than the SDSS DR11
area (about 8; 300 deg2), we ignore the cross-covariance
between the clustering (wp) and galaxy-galaxy lensing
(ΔΣ). The mock catalogs used in the covariance matrix
estimation are generated using full-sky simulations [63],
and hence the covariance automatically includes the super-
sample covariance contribution [64]. The additional covari-
ance contribution due to the magnification bias effect on the
lens galaxy distribution is analytically estimated and added
onto the estimate from mock measurements [6]. See More
et al. [17] for more detail of the covariance matrix
estimation.
We construct a posterior probability distribution for the

parameters θ given the data vector d, denoted as PðθjdÞ, by
performing Bayesian inference,

PðθjdÞ ∝ LðdjθÞΠðθÞ; ð33Þ

where ΠðθÞ is the prior distribution of θ.
In Table I, we summarize the model parameters and their

priors. The first section summarizes the cosmological
parameters; Ωmð¼ 1 − ΩdeÞ and ln 1010As are the para-
meters to which our weak-lensing and clustering observ-
ables are most sensitive, and we adopt uninformative
uniform priors on these model parameters. On the other
hand, the weak-lensing and clustering analyses are not
sensitive to ωb ¼ Ωbh2 and ns, and hence we adopt
informative priors using normal distributions; we use a
BBN prior for ωb [65–67], and a Planck prior on ns [9].
Note that we increased the uncertainty of the Planck prior
on ns by a factor of three to be conservative. The parameters
b1ðziÞ in the second section are the linear galaxy bias
parameters for i ¼ LOWZ, CMASS1, and CMASS2. We
use uninformative priors on each of these parameters, given
that our samples could be affected by assembly bias [13].

For the magnification bias parameter, αmagðzlÞ, we adopt a
prior using a normal distribution; the central value is taken
from the estimated slope of number counts at luminosity
cut, while we adopt a relatively wide width, σðαmagÞ ¼ 0.5,
for a conservative analysis.
The fourth section summarizes the residual redshift and

the residual multiplicative bias parameters. In the small-
scale analysis by Miyatake et al. [16], we find that the
weak-lensing signals have a statistical power to calibrate
the residual redshift error parameter (Δzph) to the precision
of σðΔzphÞ ≃ 0.1, based on the method in Ref. [53]. On the
other hand, as discussed in Sec. VI, we find that the
statistical power of the large-scale signals is not sufficient
to calibrate Δzph. Therefore, in this paper, we use a
Gaussian prior on Δzph, N ð−0.05; 0.09Þ, that is inferred
from the mode and the credible interval of the posterior
distribution of Δzph in the fiducial small-scale analysis by

TABLE I. Model parameters and priors used in our cosmo-
logical parameter inference. The label Uða; bÞ denotes a uniform
(or equivalently flat) distribution with minimum a and maximum
b, while N ðμ; σÞ denotes a normal distribution with mean μ and
width σ. For the residual photo-z error parameter, Δzph, we
employ the informative Gaussian prior N ð−0.05; 0.09Þ in our
baseline analysis, which is taken from the companion analysis
result in Miyatake et al. [16] that perform a parameter inference
by comparing the halo model based predictions to exactly the
same clustering observables (down to the smaller scale cuts for
ΔΣ and wp).

Parameter Prior

Cosmological parameters
Ωde Uð0.4594; 0.9094Þ
lnð1010AsÞ Uð1.0; 5.0Þ
ωc Uð0.0998; 0.1398Þ
ωb N ð0.02268; 0.00038Þ
ns N ð0.9649; 3 × 0.0042Þ
Galaxy bias parameters
b1ðzLOWZÞ Uð0.1; 5.0Þ
b1ðzCMASS1Þ Uð0.1; 5.0Þ
b1ðzCMASS2Þ Uð0.1; 5.0Þ
Magnification bias parameters
αmagðzLOWZÞ N ð2.259; 0.5Þ
αmagðzCMASS1Þ N ð3.563; 0.5Þ
αmagðzCMASS2Þ N ð3.729; 0.5Þ
Photo-z / Shear errors
Δzph N ð−0.05; 0.09Þ
Δm N ð0.0; 0.01Þ
PSF residuals
αpsf N ð−0.026; 0.010Þ
βpsf N ð−1.656; 1.326Þ
Intrinsic alignment parameters
AIA Uð−5; 5Þ

3We mistakenly omitted one realization of the full sky
simulation for the covariance estimation. Thus, in practice, we
use ð107 × 13 − 74 − 2Þ=ð107 × 13 − 1Þ ¼ 0.946 for the Hartlap
factor instead.
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the companion work Miyatake et al. [16]. That is, we
employ the prior that is centered at Δzph ¼ −0.05, meaning
that the source redshift distribution inferred from the
photo-z estimates is lower than the true distribution by
jΔzphj ¼ 0.05.
For the prior on the multiplicative shear bias, we

use the Gaussian prior with zero mean and width of
σ ¼ 0.01, which is estimated from HSC galaxy image
simulations [26]. The fifth section summarizes the PSF
residual systematics modeling parameters. We use
Gaussian prior for these model parameters. The center
and width are estimated from the cross-correlation between
star shapes and galaxy shapes (see [17] for more detail).
The sixth section summarizes the single intrinsic alignment
parameter of the NLA model for this source sample, for
which we use an uninformative uniform prior. The dimen-
sion of the fiducial model parameter vector is 16 in total,
5 for the cosmological parameters and 11 for the nuisance
parameters.
We sample parameters from their posterior distribution

given the data vector using the Monte Carlo method
in this high-dimensional parameter space. In particular,
we utilize the nested sampling algorithm implemented
in MultiNest [68] from the python interface
PyMultiNest [69]. MultiNest has two hyperpara-
meters, the live points nlive and the sampling efficiency
rate efr. We use nlive ¼ 600 and efr ¼ 0.3 as the
fiducial setup. Another hyperparameter, the tolerance tol,
is set to 0.1, and replaced with a smaller value if necessary to
check for convergence.
In this paper, we report the inference result in the

format of

modeþ34% upper
−34% lower ðMAPÞ; ð34Þ

where the mode is the peak value of a parameter in the one-
dimensional marginal posterior distribution, the 68% credi-
ble interval is defined as the highest density interval of the
posterior, and “þ34% upper” and “−34% lower” are the
upper and lower limit of the 68% credible interval (see
Fig. 3 of [6] for the illustration of the definitions of these
statistics of marginalized posterior). We also report the
“MAP” value of the parameter that is the parameter value at
the maximum a posteriori model which has the highest
posterior value in the chain. The mode value is defined with
the marginal posterior and thus subject to the projection
effect of the posterior distribution from the full-parameter
space, while the MAP is not. Thus, a significant difference
between the mode and MAP value may indicate the degree
to which the mode value is affected due to lower-
dimensional projection of the posterior distribution.
However, we should note that the estimation of the
MAP value can be noisy due to a finite number of samples
in the chain, especially in the presence of severe parameter
degeneracy(degeneracies), resulting in a MAP that

corresponds to a local minimum in the posterior surface.
Therefore, we will use the MAP value and its difference
from the mode as an indicator of projection effects. In the
summary table that gives the cosmological constraints for
various setups and tests, we also report the mean value as
the third point estimate so that one can easily compare our
results with external results that also use the mean.

IV. BLINDING SCHEME AND INTERNAL
CONSISTENCY

To avoid confirmation bias, we perform our cosmologi-
cal analysis in a blind fashion. The details of the blinding
scheme can be also found in Sec. IIB of More et al. [17].
We employ a two-tier blinding strategy to avoid uninten-
tional unblinding during the cosmological analysis. The
two tiers are as follows:

(i) Catalog level: The analysis team performs the
cosmological analysis using three different weak-
lensing shape catalogs. Only one is the true catalog
and the other two catalogs have multiplicative biases
which are different from the truth (see below for
details). The analysis team members do not know
which is the true catalog.

(ii) Analysis level: When the analysis team makes plots
comparing the measurements with theoretical mod-
els, the y-axis values (e.g., the amplitudes of ΔΣ) are
hidden and the analysis team is not allowed to see
the values of cosmological parameters used in the
theoretical models. When the analysis team makes
plots showing the credible intervals of cosmological
parameters (i.e., the posterior distribution), the
central value(s) of parameter(s) are shifted to zero,
and only the range of the credible interval(s) can be
seen. Finally, the analysis team does not compare the
posterior for cosmological parameter(s) or the model
predictions with external results such as the Planck
CMB cosmological parameters prior to unblinding.

See Sec. IIB of More et al. [17] (see also [18]) for details
of how the blinded catalogs were constructed in a manner
that prevents accidental unblinding by the analysis team.
The use of these catalogs means that the analysis team must
perform three analyses, but this method avoids the need for
reanalysis once the catalogs are unblinded.
The set of the three shape catalogs used in this paper is

shared with the two companion papers, More et al. [17]
presenting details of the measurements of observables used
in this paper and Miyatake et al. [16] presenting the
cosmological parameter estimation from the same signals
as those of this paper, but including the information down
to smaller scales and using the halo model-based method.
We imposed the following criteria for deciding to unblind
our results:

(i) Analysis software is made available to collaboration
members and specific members have reviewed each
part of the code.
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(ii) Validation tests of the cosmology analysis pipeline
are performed using synthetic data vectors, some of
which are generated using mock catalogs of gal-
axies. In particular, the key cosmological parameter
S8 must be recovered to within 0.5σ (σ is the
marginalized credible interval), for the fiducial mock
catalogs (see below).

(iii) Internal consistency tests are performed to check
whether the estimate of the key cosmological
parameter is changed, compared to the fiducial

analysis method, using subsets of data vector and/
or different analysis setups. Table II summarizes the
internal consistency tests that we performed before
unblinding.

(iv) The goodness of fit of the best-fit model predictions
to the data vector in each of the three blind catalogs
is quantified.

The analysis team resolved that the results would be
published regardless of the outcome once the results are
unblinded, without any changes or modifications to the

TABLE II. Internal consistency tests carried out for the cosmological parameter analysis. All of the analyses are performed before
unblinding the results. In this paper, we use the prior ΠðΔzphÞ ¼ N ð−0.05; 0.09Þ, which is obtained from the small-scale 3 × 2pt
analysis in Miyatake et al. [16], for the analysis setups that are denoted by the superscript “ �” in the label (see Table I and main text
explaining the table). We also consider the analyses using the different photo-z prior centered at Δzph ¼ 0, ΠðΔzphÞ ¼ N ð0; 0.1Þ, to
study the impact of the different priors of the photo-z error parameter on our results, as denoted by the superscript “†” in the label. The
third column denotes the dimension of the sampled model parameters and the data vectors, DðθÞ and DðdÞ, respectively.
Setup label Description DðθÞ, DðdÞ
3 × 2pt� [baseline analysis] a joint analysis of ΔΣ, wp and ξ� 16, 74
2 × 2pt� A joint analysis of ΔΣ and wp 13, 59
Cosmic shear� Cosmic shear analysis using ξ� 10, 15

3 × 2pt, w/o LOWZ� 3 × 2pt, without LOWZ sample for wp and ΔΣ 14, 56
3 × 2pt, w/o CMASS1� 3 × 2pt, without CMASS1 sample for wp and ΔΣ 14, 55
3 × 2pt, w/o CMASS2� 3 × 2pt, without CMASS2 sample for wp and ΔΣ 14, 52

2 × 2pt, w/o LOWZ� 2 × 2pt, without LOWZ sample for wp and ΔΣ 11, 41
2 × 2pt, w/o CMASS1� 2 × 2pt, without CMASS1 sample for wp and ΔΣ 11, 40
2 × 2pt, w/o CMASS2� 2 × 2pt, without CMASS2 sample for wp and ΔΣ 11, 37

No photo-z error 3 × 2pt, fixing Δzph ¼ 0 15, 74
No shear error� 3 × 2pt, fixing Δm ¼ 0 15, 74
No magnification bias error� 3 × 2pt, fixing αmag ¼ μ 13, 74
No PSF error� 3 × 2pt, fixing αpsf ¼ βpsf ¼ 0 14, 74
No IA� 3 × 2pt, fixing AIA ¼ 0 15, 74
Extreme IA� 3 × 2pt, fixing AIA ¼ 5 15, 74

Rmax ¼ 30h−1 Mpc� 3 × 2pt, using the ΔΣ and wp signals up to R ≤ Rmax ¼ 30h−1 Mpc 16, 51

2cosmo� 3 × 2pt, varying only two cosmological parameters, Ωde and lnð1010AsÞ 13, 74
2cosmo, 2 × 2pt� 2 × 2pt, varying only two cosmological parameters, Ωde and lnð1010AsÞ 10, 59

Δzph ∼ Uð−1; 1Þ 3 × 2pt, with an uniform prior of Δzph ∼ Uð−1; 1Þ 16, 74

3 × 2pt† 3 × 2pt, with prior of Δzph ∼N ð0; 0.1Þ 16, 74
2 × 2pt† 2 × 2pt, with prior of Δzph ∼N ð0; 0.1Þ 16, 59
Cosmic shear† Cosmic shear, with prior of Δzph ∼N ð0; 0.1Þ 16, 15

XMM ð33.17 deg2Þ� 3 × 2pt, but using only XMM field for ΔΣ and ξ� 16, 74
GAMA15H ð40.87 deg2Þ� 3 × 2pt, but using only GAMA15H field for ΔΣ and ξ� 16, 74
HECTOMAP ð43.09 deg2Þ� 3 × 2pt, but using only HECTOMAP field for ΔΣ and ξ� 16, 74
GAMA09H ð78.85 deg2Þ� 3 × 2pt, but using only GAMA09H field for ΔΣ and ξ� 16, 74
VVDS ð96.18 deg2Þ� 3 × 2pt, but using only VVDS field for ΔΣ and ξ� 16, 74
WIDE12H ð121.32 deg2Þ� 3 × 2pt, but using only WIDE12H field for ΔΣ and ξ� 16, 74

w/o star weight 3 × 2pt, but without using star weight when computing wp 16, 74

DEMPZ & WX� 3 × 2pt, using DEMPZ & WX for psðzsÞ 16, 74
MIZUKI� 3 × 2pt, but using MIZUKI for the source selection and the stacked psðzsÞ 16, 74
DNNZ� 3 × 2pt, but using DNNZ for the source selection and the stacked psðzsÞ 16, 74
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analysis method after unblinding. In the following text, we
will explicitly indicate any analysis or results that were
obtained after unblinding.

V. MODEL VALIDATION

In order to obtain unbiased cosmological parameters
from the data, we need to validate our model. We adopt the
minimal bias model for the galaxy bias, which was already
validated using mock catalogs populated by galaxies using
different models for the galaxy-halo connections in
Sugiyama et al. [13] for the hypothetical HSC-Y1
mock data.
In addition to the galaxy bias uncertainties, we also

validate the use of halofit for the prediction of cosmic
shear signals, neglecting baryonic effects on the nonlinear
matter power spectrum. To validate this, we simulate the
data vectors using HMCode with various degrees of
baryonic physics.
For the HSC-Y3 data, we have greater statistical con-

straining power due to three times larger area coverage
than the HSC-Y1 data, and also due to the inclusion of
cosmic shear in the 3 × 2pt analysis compared to the HSC-
Y1 2 × 2pt analysis [6]. Therefore, we subject our model-
ing and analysis methods to validation tests using the mock
data vectors, but using the covariance matrix for the HSC-
Y3 data.
In this paper, we use an informative prior on Δzph taken

from the result of the small-scale 3 × 2pt analysis, which
can more precisely self-calibrate Δzph due to its higher
signal-to-noise ratio. We validate the use of the posterior
from the small-scale analysis as a prior on Δzph by
analyzing a mock data vector that includes the photo-z
bias effect.
We describe the model validation results in Appendix V

in detail. In brief summary, the validation tests are passed
for most of the synthetic data vectors; our method can
recover the input S8 with a bias smaller than 0.5σ (σ is the
marginalized error for the baseline 3 × 2pt analysis), where
we test our method using the mode value of S8 in the
posterior, rather than the MAP value, compared to the input
value used in generating the synthetic data. However, given
the fact that there is no established, accurate theory of the
galaxy formation physics or galaxy-halo connection, we
also consider the worst-case scenario in order for us to be
ready for any unexpected result in the cosmological
parameter estimation. As for the worst-case scenario, we
consider the extreme mock data of SDSS galaxies, where
we consider a nonstandard prescription of the galaxy-halo
connection when generating the mock SDSS catalogs from
N-body simulations. Even for these extreme mocks, the
minimal bias model can recover the input S8 value with
a bias ≲1σ, while the halo model method suffers from a
greater bias. For these worst-case cases, we have a

diagnostic to identify a signature of the strong nonlinear-
ities in the galaxy-halo connection. Since changes in the
galaxy-halo connection cause a stronger modification in the
clustering observables at smaller scales around and below
virial radii of massive halos (Mpc scales), while the
clustering observables have the linear theory limit on
sufficiently large scales, which is captured by the minimal
bias model. Hence, if the actual SDSS galaxies are affected
by such extreme galaxy-halo connection, the cosmological
parameters display systematic shifts with changing the
scales cuts from small to large scales in the cosmology
inference. We carefully study these behaviors using the
different mocks. For the actual cosmology analysis of the
HSC-Y3 and SDSS data, we did not observe such a
systematic change in the S8 values for the different scales
cuts or from the small- and large-scale 3 × 2pt analyses.
These tests gave us a justification that we can unblind the
results.

VI. RESULTS

A. HSC-Y3 ΛCDM constraint

In this section, we present the main results from the
cosmological parameter inference using the HSC-Y3 lens-
ing and SDSS clustering measurements for the flat ΛCDM
model. All of the analyses in this section were done before
unblinding, and the results are presented without any
change after unblinding.
Figure 1 shows the cosmological constraints from the

large-scale 3 × 2pt analysis carried out in this paper. The
central values and associated errors are

Ωm ¼ 0.401þ0.056
−0.064ð0.394Þ;

σ8 ¼ 0.666þ0.069
−0.051ð0.705Þ;

S8 ¼ 0.775þ0.043
−0.038ð0.808Þ: ð35Þ

The HSC-Y3 large-scale 3 × 2pt analysis achieves ∼5%
fractional accuracy on S8. The improvement in the stat-
istical precision of S8 compared to the HSC-Y1 2 × 2pt
analysis is a factor of ∼2, due to the increase in the
HSC survey area and the inclusion of the cosmic
shear data.
Figure 2 shows how the cosmological parameter con-

straints are improved by combining the 2 × 2pt
and cosmic shear analysis in 3 × 2pt. It is clear that the
2 × 2pt analysis and cosmic shear are complementary to
each other for constraining the cosmological parameters;
combining them improves the S8 constraint. Note that the
cosmic shear analysis alone cannot constrain Ωm,
because the cosmic shear in this paper does not include
tomographic information and therefore is not sensitive to
the growth history of matter clustering, which depends
on Ωm.
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Figure 3 shows the result of the 3 × 2pt analyses for three
cosmological parameters and the Δzph parameter, using
three different Δzph priors: the informative prior taken from
the baseline small-scale analysis result, the uninformative
prior, ΠðΔzphÞ ¼ Uð−1; 1Þ, and the informative Gaussian
prior with little room for a large shift from zero,
ΠðΔzphÞ ¼ N ð0; 0.1Þ. In the baseline analysis of this
paper, we use the first prior. Comparing the results with
N ð−0.05; 0.09Þ and N ð0; 0.1Þ tells us the impact of the
central value of the Gaussian prior on the cosmological
parameters. When the uninformative prior is used, the
large-scale 3 × 2pt analysis has insufficient information to
constrain Δzph, although the posterior of Δzph prefers a
negative value of Δzp as found in the small-scale 3 × 2pt
analysis. As a result, the S8 constraint is significantly
degraded. This was the main reason that we decided to use
the informative prior obtained from the baseline small-scale
3 × 2pt analysis in Miyatake et al. [16] as shown in the blue
contour. This prior choice was made during the blind
analysis phase, and therefore the baseline result is free of
confirmation bias.
From Fig. 3, we find that adopting the informative

Gaussian prior aroundΔzph ¼ 0 results in a larger S8 value.
The shift in S8 between the baseline analysis and the
Gaussian prior of Δzph in this case corresponds to a shift
of 0.7σ, a non-negligible amount. In Appendix A, we
validated the use of the posterior obtained from the small-
scale 3 × 2pt analysis as the prior on Δzph using the mock
analysis. We found that the posterior of Δzph from the

small-scale analysis can be safely used as the prior in the
large-scale 3 × 2pt analysis, i.e., the analysis in this paper, to
recover the input S8 value. Thus, we decided prior to
unblinding to adopt the informative prior ofN ð−0.05; 0.09Þ
for our baseline analysis.
Figure 4 compares the model predictions at the MAP

(maximum a posteriori) model of the chain with the
measured signals. The best-fit model fairly well repro-
duces the measured signals over the range of separations
used for the cosmological analysis. The figure also shows
that the best-fit model fails to reproduce the measured wp
and ΔΣ on scales below the fitting range. This is expected,
as the simple minimum bias model is invalid on such small
scales.
Figure 5 shows the goodness-of-fit test of the 3 × 2pt

analysis. To quantitatively evaluate the goodness-of-fit, we
follow the same method as for the S16A analysis [6]; we
simulate 100 noisy mock data vectors, apply the same
analysis to each mock data vector as for the real data, and
obtain the distribution of the χ2 values at the MAP model
for each mock. Note that here we generate the noisy data
vector using the covariance matrix with a multiplicative
shear bias parameter of m ¼ 0 as described in Appendix V.
We find that the probability to exceed the observed
value, χ2 ≃ 70, by chance is p ¼ 0.43. We have also
checked that the dependence of the reference χ2 distribution
on the assumed multiplicative shear bias value used when

FIG. 3. Cosmological parameter constraints for HSC-Y3
3 × 2pt analyses with three different Δzph prior choices; the
informative prior taken from the fiducial small-scale analysis
result, the uninformative prior Uð−1; 1Þ, and the informative prior
ΠðΔzphÞ ¼ N ð0; 0.1Þ.

FIG. 2. The cosmological parameter constraints for the baseline
3 × 2pt, 2 × 2pt, and cosmic shear analyses. Here, every analysis
uses the informative prior on Δzph from the HSC-Y3 small-scale
analysis by Miyatake et al. [16].
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generating the noisy mock data is weak and does not
change our conclusion. We therefore conclude that within
the statistical constraining power of our data, the model
is able to describe the data with no signs of model
misspecification.

B. Internal consistency

In this section, we present the results of internal con-
sistency tests of our analysis. The analysis setups for the

internal consistency tests are summarized in Table II.
Figure 6 summarizes the result of the internal consistency
tests, and Table IV in Appendix C summarizes the central
values and credible intervals for each parameter. In short, we
did not find any significant shift in each of the cosmological
parameters compared to the expected statistical scatter.
The largest variation is the difference between the S8

values obtained from the 2 × 2pt analysis versus from the
cosmic shear analysis alone. First, the trends in S8—i.e., the

FIG. 4. Comparison between the measured signals and the best-fit model predictions for the baseline large-scale 3 × 2pt analysis.
From the top to the bottom panels, we show the comparison for wpðRÞ and ΔΣðRÞ for the three SDSS samples (LOWZ, CMASS1, and
CMASS2), and the cosmic shear correlation functions, ξ�ðϑÞ, respectively. In each panel, the black points with error bars denote the
measured signals in each R or ϑ bin, where the error bar is computed from the diagonal component of the covariance matrix. The solid
line denotes the model prediction at the MAP (maximum a posteriori model of the chain), while the red-shaded regions show the 68%
and 95% credible intervals of the model predictions in each bin. The blue shaded region in each panel indicates the range of R or ϑ that is
used for the cosmological parameter inference in this paper. See Sec. III for details of the model predictions. Note that the x-axes in the
top and middle panels are the comoving distance in the reference cosmology (see the main text), Rref , but we omit the superscript “ref”
for simplicity.
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larger and smaller S8 values for the two analyses than the S8
value from the 3 × 2pt analysis—are also found in the
model validation tests as shown in Fig. 8. To make a
quantitative estimate of the statistical significance of the S8
difference, ΔS8, we use the same 100 noisy mock realiza-
tions of the vector as those used in the goodness-of-fit
analysis. We run the 2 × 2pt and cosmic shear analyses for
each noisy mock realization and then assess how often the
measured difference in S8 from the real data occurs in the
distribution of the S8 difference measured in the 100 noisy
mock realizations. The left panel of Fig. 7 shows that the
probability to exceed the observed value ΔS8 ¼ 0.10 by
chance is p ¼ 0.2.
As another internal consistency test, we compare our

result with that from the HSC-Y3 small-scale 3 × 2pt
analysis in Miyatake et al. [16] as shown in Fig. 1. The
two 3 × 2pt analyses use the same observables albeit on
different ranges of scales, but use different theoretical
model templates for the cosmology analysis; the minimal
bias model in this paper and the emulator-based halo model
in Miyatake et al. [16]. The figure shows that our result is in
good agreement with that in Miyatake et al. [16]. In order to
assess the consistency of these two analyses, we again used
the 100 mocks, which allow us to account for the
correlations between the cosmological parameters from
the large- and small-scale 3 × 2pt analyses. As shown in the
right panel of Fig. 7, the probability to observe an S8
difference larger than what we obtain ΔS8 ≃ 0.01, is
p ¼ 0.5. Thus, we conclude that the large- and small-scale

3 × 2pt analyses are consistent with each other. The two
vertical arrows in the right panel of Fig. 7 indicate the
expected size of ΔS8 in the presence of assembly bias
effects that are simulated using the mock catalogs in
Miyatake et al. [14]. The assembly-b-ext is the
worst-case scenario of the assembly bias effect and can
be flagged at a 2σ level if such effect really exists
(see Sec. A for the detail of the mocks). The agreement
between the results from the large-scale and small-scale
analyses also indicates that the SDSS galaxies in our
sample are not largely affected by the possible assembly
bias effect [5,14].

C. Comparison with external data and S8 tension

In Fig. 1 we also compare our result with external
experiments. For the CMB, we consider the Planck
2018 [9] cosmological constraints—in particular, those
derived from primary CMB information, referred to as
“TT, EE, TEþ lowE” in their paper.4 For the lensing
experiments, we use the cosmological constraints from
DES-Y3 [70] and KiDS-1000 [8]. In particular, we use the
cosmological constraint from a 3 × 2pt analysis with
the MagLim sample from DES-Y3 data.5 The fiducial
KiDS-1000 3 × 2pt analysis included the angular diameter
distance from the measured BAO scale in addition to
the clustering information, which well constrains Ωm for
the flat ΛCDMmodel. Hence, we instead compare with the
result from the cosmic shear and galaxy-galaxy lensing
(CSþ GGL) analysis.6

Our result is generally in good agreement with both the
DES-Y3 and KiDS-1000 results. For our result, the
degeneracy direction in cosmological parameter subspaces
such as the Ωm-S8 plane is slightly different from those of
the DES-Y3 and KiDS-1000 results.
When comparing our result to the Planck 2018 result, we

did not find any significant tension in the cosmological
parameters. More quantitatively, we compare the cosmo-
logical parameter constraints from this paper and the Planck
2018 using the eigen tension metric [71]. We first identify
the eigenmodes of the cosmological parameters by diagonal-
izing the posterior covariance. We found that the first two
eigenmodes, e1 ≡ σ8ðΩmÞ0.52 and e2 ≡Ωmðσ8Þ−0.52 are
well-constrained compared to the prior distribution. For
this reason we use these eigenmodes for tension assessment.
As an independent criterion of principle eigenmodes, we

FIG. 5. The evaluation of the goodness-of-fit with the χ2ðθMAPÞ
value at the maximum a posteriori (MAP) model. The reference
distribution (blue histogram) is obtained by analyzing 100 noisy
mock data vectors. See the main text for how the noisy mock data
vectors are generated. The vertical solid line denotes the observed
χ2 value for the cosmology analysis of the actual HSC-Y3 and
SDSS data. The probability of finding the χ2 value larger than the
observed value (p value) is about 43%.

4We use the Planck 2018 public chain of “base/plikHM_
TTTEEE_lowl_lowE/base_plikHM_TTTEEE_lowl_lowE” down-
loaded from their wiki https://pla.esac.esa.int/pla/aio/product-action?
COSMOLOGY.FILE_ID=COM_CosmoParams_fullGrid_R3.01.zip.

5We use the DES-Y3 public chain of “chain_3x2pt_
lcdm_SR_maglim.txt” downloaded from DES Data Manage-
ment: https://des.ncsa.illinois.edu/releases/y3a2/Y3key-products.

6We use the KiDS-1000 public chain of “samples_multinest_
blindC_EE_nE_w.txt” downloaded from their website https://
kids.strw.leidenuniv.nl/DR4/KiDS-1000_3x2pt_Cosmology.php.
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also computed the effective number of cosmological param-
eters constrained by the large-scale analysis using the
Gaussian linear model [72]. Focusing only on the cosmo-
logical parameters, we find that the effective number of
constrained cosmological model parameters is 1.99, which
supports the choice to use the first two eigenmodes for
tension assessment. For these eigenmodes, we estimate the
parameter difference distribution, PðΔeÞ, from the MCMC
ofHSC-Y3andPlanck 2018,whereΔe≡ eHSC−Y3 − ePlanck.
We then compute the p-value of the null hypothesis, i.e., the
case that the Planck 2018 and HSC-Y3 results are in perfect
agreement with each other,

p ¼
Z
PðΔeÞ<Pð0Þ

dðΔeÞPðΔeÞ: ð36Þ

We find p ¼ 0.846, corresponding to at most a 1.4σ-level
difference between ourHSC-Y3 result and thePlanck result.
Therefore we conclude that our result is consistent with the
Planck CMB results. Although at face value this seems
different from the 2.5σ tension between Planck and the
small-scaleHSC-Y3 result presented inMiyatake et al. [16],
this difference is entirely due to the lesser statistical
constraining power of our result, as reflected in the larger
credible intervals.

FIG. 6. Summary of internal consistency tests. The estimates of cosmological parameters, Ωm, σ8, and S8, and the photo-z parameter,
Δzph, are summarized for each of the analysis setups in Table II. Here, the central point is the mode and the error bar is the 68% highest
density interval estimated from the one-dimensional posterior distribution of each parameter. For comparison, the shaded band is the
constraint from the baseline analysis. The vertical black dotted line in the Δzph panel denotes Δzph ¼ 0.
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VII. CONCLUSION

In this paper, we have presented cosmological con-
straints from a joint analysis of galaxy clustering (wp),
galaxy-galaxy lensing (ΔΣ), and the cosmic shear corre-
lation (ξ�), measured from the HSC-Y3 shape catalog and
the SDSS DR11 spectroscopic galaxy catalog. We have
adopted a conservative analysis strategy: we employed the
“minimal bias model” as a theoretical template to model
ΔΣ and wp, and strict scale cuts to ensure its validity. Using
mock data vectors, we showed that the minimal bias model
can recover the input cosmological parameter to within the
statistical error for the HSC-Y3 data, as long as the analysis
is restricted to large scales, R > 8 and 12h−1 Mpc for wp

and ΔΣ, respectively. This is because structure formation
on such large scales is governed by gravity alone whereas
the nonlinear galaxy bias and baryonic effects are confined
to smaller scales. In addition, we employed a conservative
prior on the nuisance parameter, Δzph, to model a
residual systematic effect in the mean redshift of HSC
source galaxies used in the weak-lensing measurements.
We adopted a Gaussian prior of Δzph given by
N ð−0.09; 0.05Þ, based on a similar 3 × 2pt analysis in
the companion paper Miyatake et al. [16] using the same
data vector down to smaller scales. Another key feature of
this analysis is that we do not include the tomographic
information in weak-lensing signals, but rather adopt a a
single conservatively-selected source sample to make our
results robust against the residual photo-z error following
the method in Oguri and Takada [53].

Our cosmological parameter constraint for the flat
ΛCDM model is S8 ¼ 0.775þ0.043

−0.038 , with ∼5% precision.
From the comparison with Planck 2018 [9], we found that
our result is consistent with Planck, indicating no signifi-
cant tension. We found that the cosmic shear correlation
function not only improves the cosmological parameter
estimation, but also helps to calibrate the residual photo-z
error Δzph. If we employ a prior on Δzph centered at no bias
value,N ð0; 0.1Þ, the S8 value is shifted to a higher value by
∼1σ. Hence we concluded that a treatment of Δzph is
important for our cosmological analysis. We emphasize
that, using various validation tests, we defined the analysis
setups and methods during the blinding analysis stage.
Using the 100 noisy mock analyses, we confirmed that the
main result of the large-scale analysis in this paper is
statistically consistent with the small-scale analysis in
Miyatake et al. [16].
The constraining power of the large-scale 3 × 2pt analysis

in this paper is weaker than the Planck 2018 result.
Increasing the statistical constraining power is important
for a stringent test of the S8 tension or, more generally, the
ΛCDM model. There are several ways to improve the
statistical constraints from the large-scale analysis. First,
in future, we will use the full data of the HSC survey
covering about 1; 100 deg2 of sky to carry out a similar
3 × 2pt analysis. Second, we can include tomographic
cosmic shear tomography information in the 3 × 2pt analy-
sis.As shown inLi et al. [18] andDalal et al. [19], the cosmic
shear tomography can self-calibrate the residual photo-z

FIG. 7. A statistical significance of the difference between the S8 values from the two analyses, where we defineΔS8 by the difference
between the S8 modes values in the 1D posteriors of the two analyses. Left panel: The result for ΔS8 between the large-scale 2 × 2pt and
cosmic shear analyses. The blue histogram denotes the distribution of ΔS8 that is obtained by carrying out these analyses on each of 100
realizations of the noisy mock data vector (see text for details). The red solid line is the observed ΔS8 ¼ 0.10 in the real data. The
p-value is p ¼ 0.2. Right panel: The result for ΔS8 between the large-scale 3 × 2pt analysis in this paper and the small-scale 3 × 2pt
analysis in the companion paper by Miyatake et al. [16]. The observed difference is ΔS8 ¼ 0.01 and the probability to exceed this value
by chance is p ¼ 0.5. The two arrows indicated by “assembly-b” and “assembly-b-ext” denote the expected difference values of S8
obtained from the simulated synthetic data, where the assembly bias effects with different amplitudes are included.
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error; therefore, we expect that adding cosmic shear tomog-
raphy to the large-scale 2 × 2pt signals can improve the
cosmological constraints as well as the residual photo-z error
calibration. Third, to improve the cosmological constraint,
we could push the scale cuts down to smaller scales.
In order to use the smaller scale signals of wp or ΔΣ,
we would need to account for the nonlinear physics in the
R≲ 10h−1 Mpc regime, which would require more compli-
cated modeling of galaxy bias than the minimal bias model.
We will leave these improvements to our future studies.
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APPENDIX A: MODEL VALIDATION

In this appendix, we validate the model and the analysis
setup we adopted for the HSC-Y3 real data analysis. To
validate the baseline choice of model and setup in this
paper, we generate various kinds of data vectors which
include systematic errors. We analyze each of the con-
taminated data vectors with the baseline model and setup;
checking whether the cosmological parameter constraints
are robust given the constraining power of HSC-Y3 data
allows us to validate our modeling framework. We first
make a fiducial mock which does not include any system-
atic errors, and then add simulated systematic errors of
various types to the fiducial mock. We categorize the
simulated systematic errors on the data vectors into four
groups, as described in the following subsections.
The galaxy-galaxy lensing and galaxy clustering signals

in the fiducial mock is the same as used in the HSC-Y1
analysis of Sugiyama et al. [13] and Miyatake et al. [14].
These are measured from the galaxy distribution populated
by an HOD prescription on halos identified in N-body
simulation data. The cosmic shear signal is generated from
the halofit [47] code, updated by Takahashi et al. [48].
To simulate the data vector, we use the Planck 2015
cosmology [74].
Table III summarizes the validation tests done in the

following subsections, and the results are summarized
in Fig. 8.

1. Generation of contaminated mock data vectors

a. Galaxy bias uncertainties

Galaxies are biased tracers of the underlying matter
field, and thus we can extract the cosmological informa-
tion only after marginalizing over galaxy bias uncertainty.
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At cosmological scales, gravity is the only force that drives
structure formation, and hence the cosmological perturbation
theory of structure formation and the galaxy bias expansion
based on perturbation theory should work well. However, at
quasinonlinear scales, perturbation theory and the galaxy bias
expansion break down due to nonlinear physics.
In this paper, we analyze the galaxy clustering signal wp at

R > 8h−1 Mpc, and the galaxy-galaxy lensing signal ΔΣ at
R > 12h−1 Mpc, using the minimal bias model based on
cosmological perturbation theory.We validated the use of the
minimal bias model using the same scale cuts as those in
Sugiyama et al. [13], which checked that the minimal bias
model can recover cosmological parameters within the HSC-
Y1 statistical error. In this HSC-Y3 3 × 2pt analysis, we
have higher statistical power than HSC-Y1 due to the larger
area coverage of the HSC-Y3 shape catalog and the
inclusion of the cosmic shear signal. Therefore, we repeat
the validation of the minimal bias model as in Sugiyama
et al. [13] using the HSC-Y3 covariance matrix.

b. Baryonic effects on cosmic shear

For the evaluation of the cosmic shear signal, we use
halofit [47] updated by Takahashi et al. [48] as the
fiducial modeling method to compute the nonlinear matter
power spectrum for an input model.
The calibration of the fitting formula, halofit,

was obtained using N-body simulations for ΛCDM cos-
mologies. However, baryonic effects inherent in galaxy
formation physics alter the total matter power spectrum at

nonlinear scales, k≳ 0.1h Mpc−1, as shown by hydro-
dynamical simulations e.g., [75]. To validate the use of
halofit, which does not include baryonic feedback
effects, we generate mock data vectors in which we simulate
the baryonic effects on the power spectrum for a given
cosmological model using the 2015 and 2020 versions of
HMCode [76].7 In HMCode-2015 [77], the baryonic effect
is parametrized by the halo concentration parameter Abary.
Abary ¼ 3.13 corresponds to the case of no baryonic effects,
i.e., dark matter only case. The smaller values of Abary

correspond to the case where the baryonic effects are greater.
For our validation tests we consider Abary ¼ 3.13, 2.8, 2.5,
2.2, 1.9, and 1.6. The most extreme value we assume,
Abary ¼ 1.6, is designed to reproduce the OWLS simulation
result [78]. In HMCode-2020 [76], the parameter
log10ðTAGN=KÞ is used to model the AGN feedback effect
on the matter power spectrum, and we use
log10ðTAGN=KÞ ¼ 7.3, 7.5, 7.7, 7.9, 8.1, and 8.3 for the
baryon-affected mocks. Here, log10ðTAGN=KÞ ¼ 7.6 (8.3) is
designed to reproduce the AGN feedback effects in the
BAHAMAS [79] (COSMO-OWLS [80]) simulations.

TABLE III. A summary of mock signals used for the validation tests. Please see Miyatake et al. [14] for the details of each mock
catalogs which are used to simulate the synthetic data of ΔΣ and wp.

Setup label Description

Fiducial mock analyses
3 × 2pt 3 × 2pt analysis using clustering, galaxy-galaxy lensing and cosmic shear
2 × 2pt 2 × 2pt analysis using clustering and galaxy-galaxy lensing
Cosmic shear Cosmic shear analysis

Effects of galaxy bias uncertainties on wp and ΔΣ
sat-mod, sat-DM, sat-sub Use different ways to populate satellite galaxies into host halos
Off centering 1, 2, 3, 4 Mocks include the off-centering effects of central galaxies
Baryon Mock includes baryonic feedback effect
Assembly-b-ext Mock includes the extremely large assembly bias effect
Assembly-b Mock includes the large assembly bias effect
Cent-incomp Mock includes the incompleteness effect of central galaxies
fof Mock uses fof halos to populate galaxies

Baryonic effect on cosmic shear ξ�
HMCode v2015 (DM only) Mock cosmic shear is generated by HMCode v2015 with Abary ¼ 3.13
HMCode v2015 (Abary) Mock cosmic shear is generated by HMCode v2015 with Abary ∈ ½2.8; 1.6�
HMCode v2020 (TTGN) Mock cosmic shear is generated by HMCode v2020 with TAGN ∈ ½7.3; 8.3�
Photo-z bias on ΔΣ and ξ�
Δzinph ¼ −0.2 Mock signals include the effect of the worst-case photo-z error: Δzinph ¼ −0.2

PSF systematics on ξ�
PSF 4th Mock signals include the measured PSF systematic effects up to the fourth moments of PSF

7In the tomographic cosmic shear analyses with HSC-Y3 data
by Li et al. [18] and Dalal et al. [19], we use the 2016 version of
HMCode instead of the 2015 version used in this paper. The 2016
version of HMCode is an extension of the 2015 version of
HMcode to the beyond ΛCDMmodel, e.g., dark energy, neutrino
mass, and modified gravity. Thus, there is no difference between
the two versions used in Li et al. [18] or Dalal et al. [19] and this
paper as long as we focus on ΛCDM model.
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c. A systematic error in the mean source redshift

The small-scale 3 × 2pt analysis by Miyatake et al. [16]
uses a uniform prior to self-calibrate the residual systematic
error in the source redshift, Δzph. In this paper we use the
same source sample, and use the mode and the credible
interval of Δzph from Miyatake et al. [16] as an informative
prior on Δzph in our fiducial analysis method.
To validate our analysis method, we perform the follow-

ing test in a similar way to what we do in the actual analysis.

In this test, we keep the observed shear invariant, but assume
that there is a bias in the mean redshift of source galaxies
inferred from their photo-z’s, by an amount Δzinph. We
assume that the “estimated” redshift distribution, denoted
as psðzÞ, is given by a shift of the true distribution, psðzÞ, as

psðzÞ ¼ ptrue
s ðz − ΔzinphÞ: ðA1Þ

That is, psðzþ ΔzphÞ ¼ ptrue
s ðzÞ, recovering the true dis-

tribution, if Δzph ¼ Δzinph. This Δzph is our parametrization

FIG. 8. Summary of the validation tests of the model and method. We apply the baseline analysis method to the synthetic data vectors
in Table III to obtain constraints on the three cosmological parameters, Ωm, σ8, and S8, and the photo-z parameter Δzph. Similar types of
validation tests are grouped by horizontal dotted lines. The superscript “ �” denotes the analysis using the informative prior of Δzph that
is taken from the posterior distribution of the small-scale 3 × 2pt analysis in Miyatake et al. [16] on the same synthetic data vector. The
top section shows the results of the baseline analysis on the fiducial mock, i.e., the data vector uncontaminated by systematic effects. The
second section shows the robustness of the minimum bias model against uncertainties in the galaxy bias or the galaxy-halo connection,
where we use the different SDSS galaxy mock catalogs to simulate ΔΣ and wp affected by the different galaxy-halo connections. The
row “assembly-b-ext w ΠðΔzph ¼ N ð0.1Þ” shows the result obtained using the synthetic data for the “assembly-b-ext”mock, but using
the informative Gaussian prior on Δzph given by ΠðΔzphÞ ¼ N ð0; 0.1Þ. The fourth section shows the validation of the model of cosmic
shear signal against baryonic effect contamination simulated by different versions of HMCode. The fifth section shows the results for the
validation tests using the synthetic data that is affected by a systematic error in the mean source redshift by jΔzinphj ¼ 0.2 (see text for

details). Here jΔzinphj ¼ 0.2 gives the worst-case scenario for the effect of the unknown systematic photo-z error, because the small-scale
3 × 2pt has the precision of σðΔzphÞ ∼ 0.1 for the calibration of the photo-z error parameter. The analysis with superscript “�” uses the
informative prior of Δzph taken from the small-scale 3 × 2pt analysis on the same synthetic data (that is, this is our baseline analysis
method). The analysis with the labels “ΠðΔzph ¼ N ð0; 0.1Þ” shows the result using the informative Gaussian prior around Δzph ¼ 0,
and “ΠðΔzph ¼ Uð−1; 1Þ” shows the result using the uninformative flat prior. The last section is the validation of our PSF systematics
modeling in which the synthetic cosmic shear signals include the PSF systematics up to the fourth moment of PSF.
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of the systematic photo-z error [Eq. (18)]. For our test we
take Δzinph ¼ −0.2. Here Δzinph ¼ −0.2 is almost 2σ away
from the Gaussian prior of Δzph, N ð−0.05; 0.09Þ used in
our analysis. Hence this test gives the worst-case scenario for
the impact of the photo-z bias error.
For our weak-lensing observables, a systematic error in

the estimated redshift distribution, pðzÞ, causes a biased
estimate of the excess surface mass density of

cΔΣ ¼ hΣ−1
cr i−1

hΣ−1
cr i−1true

ΔΣtrue; ðA2Þ

where hΣ−1
cr i is the “estimated” average of the critical

surface mass density with psðzÞ in the ensemble average
sense [see Eq. (16) in More et al. [17] ], hΣ−1

cr itrue is the true
value computed with ptrue

s ðzÞ, and ΔΣtrue is the true excess
surface mass density. In this way, we generate a synthetic
data vector ofΔΣ including the effect of photo-z errors. The
cosmic shear correlation functions ξ� are invariant, and we
do not change the synthetic data vector of ξ� in our test.
However, the theoretical model of ξ� for a given cosmol-
ogy is biased because the model assumes an input source
redshift distribution, i.e., pðzÞ. Then we assess whether our
analysis method can recover the input S8 and other
parameters including Δzph; if our calibration method works
perfectly, the best-fit model should give Δzph ¼ Δzinph. To
estimate the impact of source redshift error, we also study
how the S8 value is biased if we employ the informative,
narrower Gaussian prior of Δzph around Δzph ¼ 0, i.e.
N ð0; 0.1Þ. Finally, and for completeness, we also perform
the test using a flat prior, Uð−1; 1Þ.

d. PSF model

To model the PSF systematic effects on cosmic shear
correlations (ξ�), we take into account the PSF modeling
error and PSF leakage based on the second moments of the
PSF [Eq. (27)] in our model. The HSC-Y3 cosmic shear
papers (Li et al. [18] and Dalal et al. [19]) accompanying
this paper, used a more sophisticated, accurate model of
PSF systematics than we do; their model incorporates terms
depending on the fourth moment of the PSF following
Zhang et al. [54], while we will only include the second-
moment terms. In this paper, we use HSC source galaxies at
high redshifts, z≳ 0.75, where the lensing efficiency is
higher, and therefore the impact of PSF systematics on the
cosmic shear signal should be smaller than for the lower-
redshift source galaxies used in the cosmic shear tomo-
graphy analysis. Nevertheless we validate our method as
follows.
Using the method in Zhang et al. [54], we measured the

second and fourth moment PSF systematics terms for the
HSC source galaxy sample used in this paper. We then
generated a mock data vector of cosmic shear signal (ξ�),
contaminated with these PSF systematics, and then

assessed whether our analysis method using the second
moment PSF model can recover the input S8 value.

2. Results of model validation tests

Figure 8 shows the results of the validation tests of our
model and method as outlined above and in Table III. Here
we compare the mode values of the cosmological param-
eters and the photo-z error parameter Δzph between our
baseline analysis and the various analyses using subsets of
our data and mock data contaminated with various kinds of
systematics. For the analysis with superscript �, we run the
large-scale analysis to the synthetic data using the inform-
ative prior on Δzph taken from the posterior of the small-
scale 3 × 2pt analysis [16] on the same synthetic data
vector. This is our baseline analysis method that we use for
the actual HSC-Y3 and SDSS data.
The top section of Fig. 8 shows the results obtained using

subsets of the data vector with the baseline analysis
method. If we use either the 2 × 2pt data vector (ΔΣ
and wp) or the cosmic shear, the constraints on the
cosmological parameters are degraded compared to the
baseline 3 × 2pt analysis. In addition, this method yields a
somewhat biased estimate of S8. This might explain the
larger value of S8 in the HSC-Y1 large-scale 2 × 2pt
analysis in Sugiyama et al. [6], compared to the S8 value
from the small-scale 2 × 2pt or the HSC-Y3 3 × 2pt
analyses.
The second section of Fig. 8 shows the results of the

validation tests obtained by applying the baseline analysis
method to mock data vectors measured from different types
of mock SDSS galaxies. Here we used the mock SDSS
catalogs described by Miyatake et al. [14], where mock
galaxies are populated into halos in N-body simulations
using different models of galaxy-halo connection. Our
baseline analysis recovers the input cosmological param-
eter, Ωm and S8, within 0.5σ, except for the assembly-b
and assembly-b-ext mocks. Hence the results give
validation of our analysis method for most of the mock
catalogs, if the SDSS galaxies follow the galaxy-halo
connection as that simulated by these mock catalogs.
The assembly bias is one of the most important system-

atic effects in the galaxy-halo connection. From Fig. 8 one
might conclude that the minimal bias model fails to pass the
validation test using the assembly bias mocks. However,
this is not so simple as explained below. First of all, we
would like to note that the assembly bias mocks we use in
the tests assume the overwhelmingly large assembly bias
effects and therefore give the worst-case scenario, where
the assembly-b and assembly-b-ext mocks have the
greater amplitudes in the 2-halo term of wp by a factor of
1.3 and 1.5, even though the assembly bias has not yet been
detected at a high significance from the SDSS galaxies. The
apparent failure of our method for the assembly bias mocks
is due to the degeneracies between the photo-z error
parameter Δzph and the cosmological parameters. In our
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baseline method, we use the informative prior on
Δzph taken from the small-scale 3 × 2pt analysis of
Miyatake et al. [16], which uses the uninformative flat
prior ΠðΔzphÞ ¼ Uð−1; 1Þ to minimize the impact of
the unknown source redshift uncertainty. To being with,
the small-scale 3 × 2pt analysis fails to reproduce both the
input cosmological parameters (e.g., S8) and the input
photo-z error parameter (Δzph ¼ 0) for these synthetic data
from the assembly bias mocks, because the small-scale
analysis is severely affected by the assembly bias effect due
to a violation in the simple scaling relation of galaxy bias
amplitude with the host halo masses. On top of this, the
small-scale analysis suffers from the parameter degener-
acies due to a positive correlation between S8 andΔzph. For
these reasons, the prior information of Δzph delivered from
the small-scale 3 × 2pt analysis is biased in the first place.
The row “assembly-b-ext w ΠðΔzphÞ ¼ N ð0; 0.1Þ”
shows the result obtained for our baseline method if we
can use the informative Gaussian prior with mean around
the true Δzph (Δzph ¼ 0), where the prior width σðΔzphÞ ¼
0.1 roughly matches the precision of Δzph for the small-
scale 3 × 2pt analysis. In this case, our method can nicely
recover the input S8 value, meaning that the minimal bias
model can work even for the worst-case assembly bias
scenario. However, this is not the case for the small-scale
3 × 2pt case; if such informative prior of ΠðΔzph ¼
N ð0; 0.1Þ is employed for the small-scale analysis, S8 is
significantly biased due to the assembly bias effect. Thus,
comparing the inferred S8 values between the small- and
large-scale 3 × 2pt analyses with the informative prior of
ΠðΔzphÞ ¼ N ð0; 0.1Þ can be used as a flag of the possible
assembly bias effect. For the actual HSC-Y3 and SDSS
data, we did not find a significant shift in the S8 values for
the analyses using ΠðΔzphÞ ¼ N ð0; 0.1Þ.
There is another diagnostic to flag the assembly bias

effect in an actual analysis. The large-scale 3 × 2pt analysis
is less affected by the assembly bias effect, even though the
amount of the bias depends on the prior choice of Δzph as
we discussed above. Hence, we can flag the significant
assembly bias effect by comparing the S8 values estimated
from the large-scale and small-scale 3 × 2pt analyses. The
right panel of Fig. 7 shows this test. The histogram is from
the noisy 100 mock data where we assume that the
simulated data is not affected by the assembly bias effect
(i.e., no assembly bias simulations). The two arrows denote
the S8 differences expected from the mock data that are
simulated from the assembly bias mocks we used above.
The measured S8 difference is quite consistent with the
noisy mock data. With the statistical power of the HSC-Y3
data, we cannot conclude that our results are not contami-
nated by the assembly bias effect that is as large as
simulated in the assembly-b mock, but the probability
that our results are contaminated by the assembly bias
effect as large as the assembly-b-ext mock is quite

unlikely (at a 2σ level). Another rationale that we found
after unblinding the HSC-Y3 cosmology results, although
not objective, is a nice agreement between the S8 values
from the small-scale 3 × 2pt analyses and the cosmic shear
analyses in Li et al. [18] and Dalal et al. [19]. If the SDSS
galaxies are significantly contaminated by the assembly
bias, this agreement is not guaranteed.
The third section in Fig. 8 tests the halofit model

which we use to compute the cosmic shear prediction in our
analysis method. The row “HMCode v2015 (DM only)”
denotes the result for the mock cosmic shear data where
baryonic effects are set to zero (i.e., Abary ¼ 3.13) Hence,
shifts in the cosmological parameters between our baseline
analysis and “HMCode v2015 (DM only)” are due to the
difference in the nonlinear matter power spectra of hal-
ofit and the HMCode. Although Ωm and σ8 show sizable
shifts, the S8 value is essentially identical in the two cases.
We carried out tests with mock data generated using
Abary ¼ 2.8 and 1.6 (HMCode 2015), and with
log10ðTAGN=KÞ ¼ 7.3 or 8.3 (HMCode 2020). Our base-
line method recovers the S8 value within the 0.33σ
uncertainties for the mocks with Abary ¼ 2.8 (HMCode
2015) and log10ðTAGN=KÞ ¼ 7.3 (HMCode 2020), and
within the 1σ uncertainties for the mocks with Abary ¼ 1.6
(HMCode 2015) and log10ðTAGN=KÞ ¼ 8.3 (HMCode
2020). Thus, these results confirm that our results are
robust, given the cosmic shear scale cuts we have used
(θmin;þ ¼ 100.8 arcmin and θmin;− ¼ 101.5 arcmin).
The validation tests for the residual photo-z error para-

meter (Δzph) shown in Fig. 8 are encouraging. Our baseline
analysis method using the informative prior on Δzph taken
from the posterior distribution of the small-scale 3 × 2pt
analysis Miyatake et al. [16] nicely recovers the input
S8, even if the redshift source distribution inferred
from the photo-z estimates is wrong, with a systematic
error by jΔzinphj ¼ 0.2. On the other hand, if we employ the
informative Gaussian prior with mean around the wrong
value Δzph ¼ 0, i.e., ΠðΔzphÞ ¼ N ð0; 0.1Þ, which is the
prior used in the HSC-Y1 analysis, the estimate of S8 is
significantly biased compared to the input value,
as can be found from the row “Δzinph ¼ −0.2, w/ ΠðΔphÞ ¼
N ð0; 0.1Þ”. If we employ the uninformative flat prior of
Δzph for our large-scale 3 × 2pt analysis, we can recover
the S8 value, but the constraining power is significantly
degraded, as shown in the row of “Δzinph ¼ −0.2,
w/ ΠðΔphÞ ¼ Uð−1; 1Þ”. Hence we conclude that our
baseline method is valid in the sense that it can safely
recover the value of S8 even if a systematic error in the
mean redshift of HSC source galaxies is as large as 0.2.
Figure 9 gives closer look at how the informative prior of
the photo-z parameter from the small-scale analysis works
in the large-scale analysis. The figure shows that S8
strongly correlates with Δzph. We again stress that, when
we adopt an informative prior from the small-scale
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analysis, which is correctly calibrated by the galaxy-galaxy
lensing self-calibration [53], we recover the input value of
S8 within the statistical error.
Finally, the row labeled “PSF 4th” in Fig. 8 shows that

our baseline analysis can recover the value of S8 even if the
cosmic shear signal is contaminated by fourth-moment PSF
systematics. Thus we conclude that our model limited to
second-moment PSF systematics is sufficient to model the
cosmic shear signal.

APPENDIX B: A CORNER PLOT FOR ALL THE
MODEL PARAMETERS

We present a corner plot for all the model parameters in
Fig. 10. This figure shows the correlations between differ-
ent model parameters. This figure can be used to infer how

we can improve the parameter constraints with prior
information or external data set in future studies.

APPENDIX C: INTERNAL CONSISTENCY TESTS

In this section, we detail the internal consistency tests
performed in Sec. VI B. Table IV shows the statistics of
model parameters, Ωm, σ8, and S8, obtained from each
analysis setup of the internal consistency tests. In this table,
we report the estimate of parameters as

modeþ34% upper
−34% lower ðMAP;meanÞ; ðC1Þ

for ease of comparison with other papers. As noted in
Sec. III D, the MAP value is estimated from the MC chain.
The MAP obtained from the MC chain can be noisy and
thus we should not take it as the robust estimate of MAP,
but the difference between the MAP and the mode value
gives an indication of how significant projection effects are
in each case.
Figures 11–15 give contour diagrams of parameter

constraints in the various internal consistency tests. The
results of similar internal consistency tests are grouped and
overplotted in each figure.

APPENDIX D: ROBUSTNESS OF
PARAMETER SAMPLING

1. Nestcheck

In this section, we test the robustness of the para-
meter sampling by MultiNest. We use the nestcheck
diagnostic [81] to test the convergence of the MultiNest
chain. Figure 16 shows the result of the convergence test for
the main cosmological parameters, Ωm; σ8, and S8. In the
top right panel, we can see that the chain covers sufficient
posterior volume. The left panels show the uncertainty of
the posterior distributions, estimated by bootstrapping the
original MultiNest chain, and indicating that our estimate
of the posterior distributions is robust.
As an additional test of convergence of our parameter

estimate, Fig. 17 compares the result of the nested sampling
by MultiNest [68] to the result of the Markov Chain
Monte Carlo sampling method of the standard Metropolis
algorithm [83]. The difference between the posterior
estimates is almost negligible, and thus we conclude that
our parameter inference by MultiNest is robust.

FIG. 9. Validation of the use of the Δzph prior taken from the
small-scale 3 × 2pt analysis, which is our baseline analysis
method. For this test, we use the synthetic data vector where
we implemented the systematic error in the source redshift
distribution modeled by Δzinph ¼ −0.2 (see Sec. A 1 c). The blue
contours show the results obtained when analyzing the synthetic
data vector with a prior taken from small-scale 3 × 2pt analysis
method, while the orange contours show the results with an
informative (but wrong!) prior N ð0; 0.1Þ.
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FIG. 10. Marginalized posterior distribution for all the model parameters with derived parameters, Ωm, σ8, and S8. Here the parameter
constraints are obtained from the baseline 3 × 2pt analysis (blue), the 2 × 2pt -only analysis (orange), and the cosmic shear alone
analysis (green).
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TABLE IV. Summary of the cosmological parameter constraints for Ωm, σ8, and S8, obtained from our large-scale 3 × 2pt analysis of
the HSC-Y3 and SDSS data. The estimates are presented in the format of modeþ34% upper

−34% lower ðMAP;meanÞ, where the mode is the peak of
the marginalized posterior distribution, the credible interval is defined as the 68% highest density interval, the MAP is obtained from the
MC chain with the highest posterior value, and the mean is defined as the parameter means with respect to the posterior. The analysis
setup for each row is summarized in Table II. The analyses with superscript � denote an analysis using the informative prior on Δzph,
given by ΠðΔzphÞ ¼ N ð−0.05; 0.09Þ, taken from the small-scale 3 × 2pt analysis in Miyatake et al. [16], and the analysis with
superscript † denotes the result using the informative Gaussian prior ΠðΔzphÞ ¼ N ð0; 0.1Þ.

Ωm σ8 S8

3 × 2pt� 0.401þ0.056
−0.064 ð0.394; 0.393Þ 0.666þ0.069

−0.051 ð0.705; 0.685Þ 0.775þ0.043
−0.038 ð0.808; 0.777Þ

2 × 2pt� 0.408þ0.053
−0.091 ð0.420; 0.385Þ 0.713þ0.105

−0.068 ð0.710; 0.749Þ 0.837þ0.057
−0.056 ð0.841; 0.838Þ

cosmic shear� 0.385þ0.103
−0.092 ð0.411; 0.374Þ 0.629þ0.114

−0.068 ð0.671; 0.684Þ 0.739þ0.043
−0.040 ð0.785; 0.744Þ

3 × 2pt, w/o LOWZ� 0.373þ0.080
−0.062 ð0.376; 0.384Þ 0.667þ0.083

−0.059 ð0.702; 0.690Þ 0.767þ0.046
−0.038 ð0.785; 0.771Þ

3 × 2pt, w/o CMASS1� 0.360þ0.071
−0.061 ð0.419; 0.369Þ 0.674þ0.080

−0.061 ð0.651; 0.694Þ 0.758þ0.043
−0.039 ð0.769; 0.760Þ

3 × 2pt, w/o CMASS2� 0.424þ0.060
−0.077 ð0.446; 0.408Þ 0.653þ0.067

−0.058 ð0.666; 0.671Þ 0.772þ0.044
−0.036 ð0.812; 0.775Þ

2 × 2pt, w/o LOWZ� 0.407þ0.069
−0.091 ð0.427; 0.389Þ 0.721þ0.102

−0.073 ð0.703; 0.752Þ 0.841þ0.062
−0.057 ð0.838; 0.844Þ

2 × 2pt, w/o CMASS1� 0.314þ0.087
−0.064 ð0.352; 0.332Þ 0.757þ0.132

−0.096 ð0.722; 0.795Þ 0.816þ0.071
−0.061 ð0.782; 0.820Þ

2 × 2pt, w/o CMASS2� 0.403þ0.067
−0.090 ð0.254; 0.387Þ 0.721þ0.129

−0.084 ð0.973; 0.766Þ 0.864þ0.062
−0.075 ð0.895; 0.856Þ

No photo-z error 0.394þ0.056
−0.068 ð0.453; 0.387Þ 0.691þ0.060

−0.059 ð0.647; 0.704Þ 0.796þ0.021
−0.022 ð0.795; 0.793Þ

No shear error� 0.394þ0.058
−0.065 ð0.466; 0.388Þ 0.678þ0.068

−0.057 ð0.632; 0.695Þ 0.785þ0.038
−0.042 ð0.787; 0.783Þ

No magnification bias error� 0.404þ0.059
−0.064 ð0.400; 0.398Þ 0.669þ0.067

−0.055 ð0.661; 0.683Þ 0.781þ0.040
−0.043 ð0.764; 0.780Þ

No PSF error� 0.407þ0.057
−0.061 ð0.394; 0.401Þ 0.667þ0.062

−0.054 ð0.685; 0.680Þ 0.781þ0.039
−0.039 ð0.786; 0.780Þ

No IA�
0.396þ0.063

−0.063 ð0.392; 0.393Þ 0.653þ0.076
−0.047 ð0.669; 0.680Þ 0.774þ0.034

−0.038 ð0.765; 0.771Þ
Extreme IA�

0.402þ0.057
−0.062 ð0.380; 0.395Þ 0.668þ0.068

−0.056 ð0.707; 0.688Þ 0.781þ0.041
−0.039 ð0.796; 0.782Þ

Rmax ¼ 30h−1 Mpc� 0.384þ0.062
−0.063 ð0.417; 0.385Þ 0.676þ0.072

−0.060 ð0.660; 0.692Þ 0.775þ0.040
−0.039 ð0.779; 0.776Þ

3 × 2pt, 2 cosmo� 0.316þ0.038
−0.036 ð0.304; 0.323Þ 0.757þ0.058

−0.057 ð0.808; 0.758Þ 0.783þ0.039
−0.042 ð0.813; 0.782Þ

2 × 2pt, 2 cosmo� 0.316þ0.037
−0.037 ð0.290; 0.318Þ 0.830þ0.068

−0.080 ð0.874; 0.830Þ 0.850þ0.056
−0.058 ð0.859; 0.850Þ

Δzph ∼ Uð−1; 1Þ 0.399þ0.061
−0.064 ð0.473; 0.396Þ 0.687þ0.079

−0.064 ð0.679; 0.703Þ 0.802þ0.059
−0.061 ð0.852; 0.800Þ

3 × 2pt† 0.406þ0.053
−0.067 ð0.490; 0.397Þ 0.686þ0.070

−0.054 ð0.640; 0.703Þ 0.802þ0.042
−0.043 ð0.819; 0.801Þ

2 × 2pt† 0.398þ0.067
−0.083 ð0.287; 0.380Þ 0.732þ0.115

−0.079 ð0.912; 0.776Þ 0.856þ0.066
−0.057 ð0.892; 0.860Þ

cosmic shear† 0.419þ0.096
−0.088 ð0.531; 0.393Þ 0.626þ0.111

−0.058 ð0.569; 0.677Þ 0.757þ0.046
−0.047 ð0.757; 0.759Þ

XMM ð∼33 deg2Þ� 0.387þ0.062
−0.073 ð0.357; 0.378Þ 0.618þ0.085

−0.071 ð0.678; 0.640Þ 0.711þ0.072
−0.074 ð0.739; 0.712Þ

GAMA15H ð∼41 deg2Þ� 0.338þ0.073
−0.071 ð0.356; 0.348Þ 0.719þ0.118

−0.091 ð0.752; 0.749Þ 0.793þ0.075
−0.066 ð0.819; 0.794Þ

HECTOMAP ð∼43 deg2Þ� 0.409þ0.060
−0.076 ð0.426; 0.395Þ 0.673þ0.095

−0.067 ð0.678; 0.706Þ 0.798þ0.067
−0.066 ð0.807; 0.800Þ

GAMA09H ð∼78 deg2Þ� 0.414þ0.060
−0.065 ð0.443; 0.404Þ 0.650þ0.070

−0.058 ð0.650; 0.668Þ 0.764þ0.057
−0.051 ð0.790; 0.769Þ

VVDS ð∼96 deg2Þ� 0.409þ0.060
−0.076 ð0.426; 0.395Þ 0.673þ0.095

−0.067 ð0.678; 0.706Þ 0.798þ0.067
−0.066 ð0.807; 0.800Þ

WIDE12H ð∼121 deg2Þ� 0.389þ0.059
−0.072 ð0.404; 0.378Þ 0.631þ0.084

−0.060 ð0.662; 0.659Þ 0.727þ0.053
−0.051 ð0.768; 0.731Þ

DEMPZ & WX�
0.404þ0.052

−0.069 ð0.422; 0.390Þ 0.653þ0.071
−0.048 ð0.641; 0.677Þ 0.763þ0.042

−0.035 ð0.760; 0.765Þ
MIZUKI� 0.415þ0.057

−0.058 ð0.407; 0.409Þ 0.655þ0.057
−0.050 ð0.667; 0.667Þ 0.772þ0.036

−0.032 ð0.776; 0.774Þ
DNNZ�

0.403þ0.059
−0.071 ð0.400; 0.390Þ 0.678þ0.088

−0.057 ð0.677; 0.709Þ 0.796þ0.050
−0.045 ð0.782; 0.799Þ
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FIG. 11. Cosmological constraints with 3 × 2pt but removing a
single lens redshift bin from each analysis.

FIG. 12. Cosmological constraints with 2 × 2pt but removing a
single lens redshift bin from each analysis.

FIG. 13. Cosmological constraints with 3 × 2pt but fixing one
of the nuisance parameters to zero.

FIG. 14. Cosmological constraints with 2 × 2pt but fixing the
cosmic shear related nuisance parameters to some fiducial values.
In “no PSF error”, we fix αpsf and βpsf to the center of the prior. In
the “no IA” case, we fix AIA ¼ 0, while we set AIA ¼ 5 in the
“extreme IA” case.
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FIG. 15. Cosmological constraints with 2 × 2pt but fixing ns
and ωcdm ≡ Ωcdmh2 to the best-fit value of [9], and ωb ≡ Ωbh2 to
the best fit of BBN [65–67]. FIG. 16. The result of nestcheck [82] for the baseline chain,

sampled in the real data analysis. The top panel shows the
posterior volume as a function of the prior volume, X. The left
panels show the uncertainty of the posterior distribution from an
input nested sampling chain, where the uncertainty is estimated
by bootstrapping the chain.

FIG. 17. The comparison of posterior estimates from the nested sampling by MultiNest and the Markov Chain Monte Carlo
sampling by the standard Metropolis algorithm.
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