Synopsis

A Riemann calculator?

Physics 1, s31
Calculus, group theory, and other mathematical tools are indispensable for understanding physics. Now the tables may be turned in a new approach toward solving a long-standing problem in mathematics.

Perhaps the greatest unsolved problem in mathematics is the Riemann hypothesis, which states that the nontrivial zeros of the zeta function all have a real part equal to 1/2. Many results in mathematics, through their relation to the distribution of prime numbers, are based on whether the hypothesis is correct.

One possible route to a proof of the hypothesis is to find a quantum mechanical system whose quantized energy levels yield the nontrivial zeros of the zeta function. About a decade ago, it was conjectured that the correct quantum system is related to a particular classical system that exhibits chaotic dynamics. Writing in Physical Review Letters, Germán Sierra from CSIC-UAM in Spain and Paul Townsend from the University of Cambridge extend part of this classical model to a realistic quantum mechanical system: a charged particle moving in a plane in a uniform magnetic field and a saddle-shaped electric potential. Although it is not a proof of the Riemann hypothesis, Sierra and Townsend’s idea makes an interesting connection between a physical system—similar to the one in which the quantum Hall effect was measured—and efforts to solve a long-standing mathematical problem. – Sonja Grondalski


Subject Areas

Interdisciplinary Physics

Related Articles

Cooking Flawless Pasta
Materials Science

Cooking Flawless Pasta

Scientists have pinpointed energy-efficient ways to cook al dente pasta and developed an infallible recipe for the perfect cacio e pepe sauce. Read More »

Spike Mechanism of Biological Neurons May Boost Artificial Neural Networks
Interdisciplinary Physics

Spike Mechanism of Biological Neurons May Boost Artificial Neural Networks

By incorporating electrical pulses with shapes similar to those of the spikes from biological neurons, researchers improved the ability to train energy-efficient types of neural networks. Read More »

Vaccination Strategy Targets Fast-Changing Pathogens
Interdisciplinary Physics

Vaccination Strategy Targets Fast-Changing Pathogens

A theory outlines an immunization protocol that fosters powerful antibodies while avoiding immune-cell death. Read More »

More Articles