FOCUS

Image—The Real Deal on 2D Electron Motion

Physics 11, 86
An improved imaging system for electrons confined to two dimensions allows the intrinsic properties of the 2D structure to be separated from the effects of the probe.
R. Steinacher et al., Phys. Rev. B (2018)
2D electrons in action. These scanning gate microscopy images show the motion of electrons confined to a 2D interface, reflecting back and forth in a wedge-shaped “cavity” open at the sides. The ripples are mostly from interference effects of electron waves in the cavity. When the probe that sweeps across the structure has a low voltage, it is “weakly invasive” (left), and the features are smoother and closer to the intrinsic properties of the structure, compared with the “strongly invasive” case (right), which provides other useful information.2D electrons in action. These scanning gate microscopy images show the motion of electrons confined to a 2D interface, reflecting back and forth in a wedge-shaped “cavity” open at the sides. The ripples are mostly from interference effects of electro... Show more

One way to study how electrons move in materials is to limit their motion to two dimensions along the interface between two semiconductor crystals (like an “ant farm” for electrons). Now Richard Steinacher of the Swiss Federal Institute of Technology (ETH) in Zurich and his colleagues have improved a technique for imaging these so-called two-dimensional electron gases (2DEGs). Their system can display the intrinsic conduction patterns of electrons and separate them from the effects of the probe.

The scanning gate microscopy technique involves sending a current through a 2D system and recording how that current changes as a needle-like probe scans over the image region. The probe acts as an obstacle to electrons—with a voltage that deflects or even repels them—and this “detouring” affects the amount of current measured in the 2D structure. Each point is then colored based on the current measured when the probe was at that position. This signal is strongest when the probe touches regions with high densities of electrons.

Ordinarily, the probe voltage needs to be so high that it distorts the image. Steinacher and his colleagues have managed to produce images over a wide range of voltages, from “weakly invasive” (left in the image) to “strongly invasive” (right). Analyzing this wide range of conditions provides details of the probe’s interactions and other properties of the 2DEG. With the probe-induced distortions removed, effects such as electron wave interference patterns become more visible.

This research is published in Physical Review B.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics.


Subject Areas

Condensed Matter Physics

Related Articles

New Moiré Landscapes for Atomic Spins
Spintronics

New Moiré Landscapes for Atomic Spins

The interactions of the spins of single atoms with a substrate can be controlled via the moiré lattice created by depositing a 2D material on top of the substrate. Read More »

A Universal Model of Spin Relaxation
Condensed Matter Physics

A Universal Model of Spin Relaxation

A first-principles theory predicts nonequilibrium spin dynamics, including various quantum scatterings for general solid materials. Read More »

Observing Iron Under Pressure
Condensed Matter Physics

Observing Iron Under Pressure

Femtosecond-resolved x-ray diffraction images of iron’s crystals as they deform under an extreme load show that the material’s elastic-plastic transition comes after a surprisingly long elastic phase.   Read More »

More Articles