Synopsis

Reflectivity of Ultrathin Mirror Switches with Voltage

Physics 11, s8
Researchers designed an atomically thin mirror with electronically switchable reflectivity that could be useful in optoelectronic circuits.  
A. Imamoğlu and P. Back/ETH

Optoelectronic circuits, which use electricity to generate and send light signals, need lightweight mirrors whose reflectivity can be electronically controlled. Two independent research groups have now found a promising material for constructing such mirrors. The two teams measured the reflectivity of an atomically thin layer of molybdenum diselenide ( MoSe2) using laser light and found that they could tune the material’s reflectivity with an applied voltage.

MoSe2 has a naturally high reflectivity for a certain frequency of light. Light at this “resonant” frequency causes electrons to tightly bind to holes (“missing” electrons), forming quasiparticles called excitons. These excitons re-radiate light both forward and backward, and the backward light constructively interferes with the incident light, leading to high reflectivity.

To measure reflectivity, the researchers sandwiched the MoSe2 between two layers of hexagonal boron nitride, which helped the sample reflect light more effectively. Then they mounted this stack onto another material. Hongkun Park of Harvard University and colleagues chose silicon and achieved up to 85% reflectivity. By contrast, Atac Imamoğlu’s group at the Swiss Federal Institute of Technology (ETH) in Zurich chose fused silica and reached a reflectivity of 41%.

Because reflectivity depends on the number of excitons in a material, both groups found that they could change the reflectivity by tuning the material’s electron density. They achieved this by applying a voltage across the MoSe2 and the substrate, which makes the electron density rise or fall depending on the voltage’s polarity. Both teams showed that toggling this applied voltage on and off changed the reflectivity of the device by more than a factor of 2, meaning it could potentially be used as an optical switch.

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance writer based in Tucson, Arizona.


Subject Areas

Semiconductor PhysicsOptics

Related Articles

Real-Time Measurements of Earth’s Spin and Tilt
Optics

Real-Time Measurements of Earth’s Spin and Tilt

An array of ring lasers provides the first continuous measurement of Earth’s motion from a single location. Read More »

Diffracting a Beam of Organic Molecules
Optics

Diffracting a Beam of Organic Molecules

Researchers create diffraction patterns using beams made of large organic molecules, a first step toward creating an interferometer for these systems. Read More »

Cooling a Spin Relaxation Hot Spot
Magnetism

Cooling a Spin Relaxation Hot Spot

The rate at which electron spins relax in silicon quantum dots is controlled by the strength and direction of external magnetic fields. Read More »

More Articles