Synopsis

Hints of an Equation of State for Granular Materials

Physics 12, s10
Experiments with a granular system have confirmed a temperature-like variable that could lead to an equation of state for this class of materials.
E. Bililign/North Carolina State University

The behavior of a gas can be predicted using equations of state, which describe the state of matter using variables such as temperature, pressure, and volume. Whether a similar approach applies to granular materials—aggregates of unbound, macroscopic particles—is uncertain, as the constituents of such materials do not experience thermal motion. Now, researchers at North Carolina State University in Raleigh have identified, through experiments, one temperature-like quantity that could constitute a variable of state in such an equation. The work could inspire applications to real-life particle-based systems such as calving glaciers and biological cells.

Ephraim Bililign and colleagues laid nearly 900 plastic disks on a square and squeezed them from the sides so that they jammed together. They investigated three pressure regimes: uniaxial compression, biaxial compression, and shearing (with one wall pushed in and an adjacent wall withdrawn). The researchers mapped the stress distribution for each regime by observing polarized light transmitted through the disks.

The team represented the interparticle forces as a mosaic of tiles whose dimensions depended on the local stress magnitude. They found that a previously introduced quantity related to the sizes of these tiles, which they termed keramicity, is conserved across all regimes for a given confining pressure. In the same way that temperature describes how entropy increases with total energy, keramicity describes how entropy increases with applied stress. The team also analyzed a related quantity called angoricity, which was previously believed to be a possible temperature-like quantity. However, they found that its value depended on the squeezing regime, ruling it out as a variable of state.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

Soft MatterStatistical Physics

Related Articles

Inducing a Curl with a Stretch
Soft Matter

Inducing a Curl with a Stretch

Patterning grooves into the surface of an elastic ribbon can cause the ribbon to curl into a tube shape when it is stretched. Read More »

Nobel Prize: Complexity, from Atoms to Atmospheres
Statistical Physics

Nobel Prize: Complexity, from Atoms to Atmospheres

The 2021 Nobel Prize in Physics honors research on complex systems that undergo significant fluctuations, including glasses and Earth’s climate. Read More »

A Less Invasive Approach to Rheology Measurements
Biological Physics

A Less Invasive Approach to Rheology Measurements

Researchers have demonstrated a method of probing a soft material’s properties that could allow them to capture those properties more accurately and for smaller systems than current methods. Read More »

More Articles