Synopsis: Hints of an Equation of State for Granular Materials

Physics 12, s10
Experiments with a granular system have confirmed a temperature-like variable that could lead to an equation of state for this class of materials.
E. Bililign/North Carolina State University

The behavior of a gas can be predicted using equations of state, which describe the state of matter using variables such as temperature, pressure, and volume. Whether a similar approach applies to granular materials—aggregates of unbound, macroscopic particles—is uncertain, as the constituents of such materials do not experience thermal motion. Now, researchers at North Carolina State University in Raleigh have identified, through experiments, one temperature-like quantity that could constitute a variable of state in such an equation. The work could inspire applications to real-life particle-based systems such as calving glaciers and biological cells.

Ephraim Bililign and colleagues laid nearly 900 plastic disks on a square and squeezed them from the sides so that they jammed together. They investigated three pressure regimes: uniaxial compression, biaxial compression, and shearing (with one wall pushed in and an adjacent wall withdrawn). The researchers mapped the stress distribution for each regime by observing polarized light transmitted through the disks.

The team represented the interparticle forces as a mosaic of tiles whose dimensions depended on the local stress magnitude. They found that a previously introduced quantity related to the sizes of these tiles, which they termed keramicity, is conserved across all regimes for a given confining pressure. In the same way that temperature describes how entropy increases with total energy, keramicity describes how entropy increases with applied stress. The team also analyzed a related quantity called angoricity, which was previously believed to be a possible temperature-like quantity. However, they found that its value depended on the squeezing regime, ruling it out as a variable of state.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

Soft MatterStatistical Physics

Related Articles

Focus: Some Granular Columns Weigh Too Much
Soft Matter

Focus: Some Granular Columns Weigh Too Much

Particles packed inside a cylinder can experience a downward force from the walls, resulting in an apparent weight increase. Read More »

Synopsis: Neural Networks Know Their Knots
Mechanics

Synopsis: Neural Networks Know Their Knots

Neural networks correctly classify different types of knot, a problem that has stumped physicists and mathematicians. Read More »

Synopsis: The Force that Clumps Your Breakfast Cereal
Interdisciplinary Physics

Synopsis: The Force that Clumps Your Breakfast Cereal

By measuring the forces that cause floating objects to drift toward each other, researchers hope to better understand the interactions that cause particles to self-assemble in fluids. Read More »

More Articles