Synopsis: Diamond Qubits Take the Stage

Physics 12, s104
A ten-qubit system based on spins in impure diamond achieves coherence times of over a minute.
C. E. Bradley/Delft University of Technology

In the global race to build a quantum computer, it’s still unclear what material will make the best qubit. Companies have bet on a variety of architectures based on trapped ions, neutral atoms, superconducting circuits, and more. Now, Tim Taminiau of Delft University of Technology, Netherlands, and colleagues have demonstrated that they can manipulate magnetic spins inside diamond into the robust quantum states necessary for quantum computing. In their experiment, they entangle all possible pairs of a ten-qubit system and produce states in which seven different qubits are entangled simultaneously. They also show that individual qubits can retain quantum coherence for up to 75 s—a record for solid-state systems.

The team’s multiqubit system is based on a nitrogen-vacancy (NV) center in diamond—a molecule-like impurity consisting of a nitrogen atom and an atom gap bound together in the place of two carbon atoms. The NV center’s electron spin constitutes the central qubit, while the nuclear spins of the nitrogen and surrounding carbon atoms form the other nine qubits. Because the electron spin responds optically, its quantum state can be programmed and read out quickly using a laser. Consequently, the researchers use the electron spin of the NV center as a bus, programming it first and then coupling it to a nuclear spin through a magnetic interaction. The nuclear spin, which does not respond optically, exhibits longer coherence times than the electron spin—up to 75 s—making it better suited to quantum memory and processing. The researchers plan to scale up this system by joining multiple ten-qubit modules.

This research is published in Physical Review X.

–Sophia Chen

Sophia Chen is a freelance science writer based in Tucson, Arizona.


Subject Areas

Quantum InformationMagnetism

Related Articles

Focus: Magnetic Field Gets up to Speed
Plasma Physics

Focus: Magnetic Field Gets up to Speed

Simulations suggest that a relatively simple laser technique could produce femtosecond magnetic-field pulses, which currently are only available at a few major lab facilities. Read More »

Viewpoint: Using “Noise” to Detect Majorana States
Condensed Matter Physics

Viewpoint: Using “Noise” to Detect Majorana States

A proposed measurement technique could overcome lingering uncertainties over whether Majorana bound states have been observed in previous experiments. Read More »

Synopsis: Lightscape Traps Rydberg Atoms in the Dark
Atomic and Molecular Physics

Synopsis: Lightscape Traps Rydberg Atoms in the Dark

A holographic technique confines excited Rydberg atoms in the central dark region of a 3D light-intensity pattern.   Read More »

More Articles