Synopsis

Hot “Pasta” Beneath a Star’s Crust

Physics 13, s130
Simulations find that pasta phases beneath a neutron star’s crust could dominate the star’s neutrino emission.
Z. Lin et al. [1]

Beneath the crust of a neutron star lies nuclear matter that’s a trillion times denser than water. At this density, models predict that the star’s nucleons—mostly neutrons but also protons—practically touch, forming dense spaghetti-like strands or lasagna-like layers within less-dense voids. Zidu Lin of Arizona State University and colleagues now predict the influence of these aptly named pasta phases on the neutrino emission from the star [1]. Since this emission is a big part of a neutron star’s heat loss, the calculations could influence the understanding of how the stars evolve.

Neutron stars produce neutrinos through the beta decay of neutrons and protons. This emission, and the heat it carries away, is thought to be strongest at a star’s core, where the matter in the star is at its densest, and a single nucleon can trigger a decay. In the less dense crust, by contrast, two particles are needed to drive the decay, and neutrino emission is weaker. But a 2004 paper suggested that pasta phases—because of their nonuniformity—could also drive the single-particle process. If that’s true, some low-mass neutron stars would release more heat from their crust than from their core.

Using molecular dynamics calculations, Lin and co-workers explored this possibility for a wide “menu” of pasta phases, including gnocchi, waffle, lasagna, and antispaghetti—a tangle of thread-like voids. When they assumed a low electron fraction in the crust (3%), the crust out-emitted the core by up to a factor of 2000 (for gnocchi). At a slightly higher electron fraction (5%), this factor rose to more than 60,000 (for lasagna). Knowing that pasta phases could enhance the cooling of a star might, the researchers say, influence the interpretation of future observations.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.

References

  1. Z. Lin et al., “Fast neutrino cooling of nuclear pasta in neutron stars: Molecular dynamics simulations,” Phys. Rev. C 102, 045801 (2020).

Subject Areas

Nuclear PhysicsAstrophysics

Related Articles

An Elusive Black Hole Comes into View
Astrophysics

An Elusive Black Hole Comes into View

Observations of seven fast-moving stars at the center of a dense star cluster in the Milky Way reveal the presence of an intermediate-mass black hole, perhaps the most puzzling class of these dark objects. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

Nuclear Decay Detected in the Recoil of a Levitating Bead
Nuclear Physics

Nuclear Decay Detected in the Recoil of a Levitating Bead

A levitating microparticle is observed to recoil when a nucleus embedded in the particle decays—opening the door to future searches of invisible decay products. Read More »

More Articles