Synopsis

Plasmonic Metamaterials Bend Light Backwards

Physics 13, s15
A thin film patterned with nanoantennas exhibits negative refraction of light, a useful feature for subwavelength imaging.
V. Bruno et al., Phys. Rev. Lett. (2020)

Materials that refract light the “wrong way” could be used to make optical lenses that can image objects smaller than visible wavelengths. So-called negative refraction has been demonstrated in thin films in which surface plasmons—collective charge oscillations—have been excited by a powerful laser. Now, an international team involving Purdue University, Indiana, the University of Glasgow, UK, and Imperial College London show that they can more efficiently achieve the same effect by placing an array of nanoscale antennas on the film.

The base layer for the team’s device was a 40-nm-thick film of indium tin oxide (ITO), a transparent conductor with many optoelectronics applications. Shining a laser onto an ITO film excites a plasmonic oscillation—specifically the “epsilon-near-zero” (ENZ) mode—at the material’s plasma frequency. These oscillations produce nonlinear optical effects but triggering them usually requires an intense light beam.

To stimulate the phenomenon with a weaker, more widely available light source, the team fabricated a square-lattice pattern of 30-nm-tall gold nanoantennas on top of the ITO. These antennas more readily captured the incoming laser energy. As the antennas’ plasma frequency matched that of the ITO film’s ENZ mode, the plasmons produced in the antennas coupled with those in the ITO film to form a single, two-component plasmonic device.

To measure the optical properties of their device, the researchers shone a second laser onto it obliquely while it was being stimulated. The reflected component of this second beam reversed entirely, backtracking along its initial path. The refracted component, meanwhile, continued on a deflected trajectory through the ITO film, bending in a direction opposite to that of a refracted ray in conventional optics.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a freelance science writer based in Bristol, UK.


Subject Areas

MetamaterialsOpticsPlasmonics

Related Articles

Twisted Graphene Could Host an Acoustic Plasmon
Plasmonics

Twisted Graphene Could Host an Acoustic Plasmon

Researchers predict that a twisted graphene bilayer excited with light could host a slow-moving acoustic plasmon. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles