Synopsis

Hair Styling with Physics

Physics 13, s161
Experiments show that hair-like bundles form different shapes depending on the speed at which they are dried.
J. Ha and Y. S. Kim/University of Illinois at Urbana–Champaign.

Sameh Tawfick and his teammates came across a strange occurrence a few years ago while studying how carbon nanotubes self-assemble in liquid: the tubes formed different structures depending on how fast they dried. Curious to know the reason for this drying dependence, the team—based at the University of Illinois at Urbana–Champaign—began a series of experiments on micrometer-thick carbon fibers, or “hairs.” In their latest study, they monitor how the speed at which liquid drains from a bundle of hairs determines the bundle’s shape when dry [1]. Untangling the role that hydrodynamics plays in fiber morphology could allow the design of smart fibers that can be controlled with wetting.

Normally, clothes and other fiber-containing materials dry slowly, taking final forms based on a competition between fiber elasticity—which resists deformation—and capillary forces—which tend to shrink the fibers toward each other. However, as Tawfick and others have recently documented, rapid drying can alter the final fiber configuration.

J. Ha and Y. S. Kim/University of Illinois at Urbana–Champaign

To investigate this effect, Tawfick and colleagues assembled hair bundles in configurations that looked like hollow paint brushes. The bundles were then submerged in a liquid bath and removed. Slow removal (slow drying) produced a rigid wall of hairs in an open ring shape, whereas quick removal (fast drying) caused the bundles to collapse into closed points. The team explained this closure as being caused by a liquid column that forms in the hollow center and pulls the bundle closed through surface tension. By contrast, slow drying gives time for liquid to drain from the center, so no column forms. This model may help researchers understand the way wet fibers trap air in otter fur and duck feathers, which could lead to bio-inspired materials.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

References

  1. J. Ha et al., “Hydrodynamic elastocapillary morphing of hair bundles,” Phys. Rev. Lett. 125, 254503 (2020).

Subject Areas

Fluid DynamicsSoft Matter

Related Articles

Prizes for Eels, Algae, Leaves, and More
Fluid Dynamics

Prizes for Eels, Algae, Leaves, and More

The winners of the annual “Gallery of Soft Matter” competition included posters and videos depicting wiggling worms, wrinkly leaves, sun-shy algae, flowing solids, and drying fibers. Read More »

Classical Turbulence Found in Quantum Fluid
Fluid Dynamics

Classical Turbulence Found in Quantum Fluid

Researchers showed that a turbulent Bose-Einstein condensate exhibits the signs of classical turbulence, hinting at possible similarities between classical and quantum fluids. Read More »

Ice Moves in a Cascade of Quakes
Fluid Dynamics

Ice Moves in a Cascade of Quakes

Observations of a new deformation mode of ice could improve models of sea-level rise. Read More »

More Articles