Video

Exhaled Droplets Grow in Size on Cool Days

Physics 14, 78
In cool, humid air, droplets emitted by a cough first grow then shrink, according to simulations.
C. S. Ng et al. [1]
Cough comparison. Simulations of a cough at two ambient temperatures: 10C (top) and 30C (bottom)—see videos below. A plume of vapor-filled air surrounding the droplets has higher humidity (white) at the colder temperature, causing the droplets to grow. This initial growth allows droplets to survive in the air for a longer time before evaporating, compared with those in the 30C simulation.Cough comparison. Simulations of a cough at two ambient temperatures: 10C (top) and 30C (bottom)—see videos below. A plume of vapor-filled air surrounding the droplets has higher humidity (white) at the colder temperature, causing the droplets to g... Show more

The COVID-19 pandemic has focused attention on the respiratory droplets produced by breathing, coughing, and singing. Numerical simulations of a cough now show [1] that in cooler, more humid air, these droplets first grow before evaporating and shrinking—they don’t continuously evaporate, as previous research has suggested. The growth occurs when warm, humid breath interacts with colder air, producing a plume of water-vapor-saturated air—an effect that leads to the familiar “frosty” breath on cold days. The enlargement of cough droplets inside this plume causes them to survive longer than they do at higher temperatures, potentially allowing an infected person to spread an airborne disease to people located farther away.

In recent simulations [2], Detlef Lohse of the University of Twente in the Netherlands and his colleagues showed that the humid, turbulent jet of breath in a cough allows the smallest droplets (around 10 micrometers in diameter) to survive up to 150 times longer than they would in isolation. These results agreed with previous evidence that, indoors, the ubiquitous “6 foot rule” is not adequate to avoid contact with the smallest droplets expelled by an unmasked person (see How Talking Spreads Viruses).

C. S. Ng et al. [1]
Simulation of a cough in ambient relative humidity of 90% and ambient temperature of 10C. The local relative humidity is shown with a color scale from dark red (90%) to white (110%), and the droplet diameters are shown with colors ranging from dark green (less than 10 micrometers) to dark red (100 micrometers). The video covers about 0.7 seconds of real time, and the field of view is 1 m wide. The white and pale red supersaturated region (humidity above 100%) is not present at 30C (see video below) and allows droplets to grow in size in their early moments (not obvious from these videos).Simulation of a cough in ambient relative humidity of 90% and ambient temperature of 10C. The local relative humidity is shown with a color scale from dark red (90%) to white (110%), and the droplet diameters are shown with colors ranging from dark... Show more

In their new simulations, the team varied both the ambient temperature and the ambient humidity. They found that for relative humidity of 90%, the average droplet size increases for about 0.3 seconds if the ambient temperature is 10C ( 50F) but continuously decreases if it’s 30C. The growth in the 10C simulations is caused by condensation in a plume of air with local humidity above 100%; at 30C, the air around the droplets is less humid. The team also developed a mathematical model that accurately predicts the local humidity changes and that could be used to predict the behavior of droplets.

C. S. Ng et al. [1]
Same as above, but the ambient temperature is 30C.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics.

References

  1. C. S. Ng et al., “Growth of respiratory droplets in cold and humid air,” Phys. Rev. Fluids 6, 054303 (2021).
  2. K. L. Chong et al., “Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission,” Phys. Rev. Lett. 126, 034502 (2021).

Subject Areas

Fluid Dynamics

Related Articles

Robo-Fish Replicates Real Swimming Action
Fluid Dynamics

Robo-Fish Replicates Real Swimming Action

A robotic fish whose swimming action is initiated in the same way as that of real fish could help researchers test predictions about these underwater creatures, using well-controlled conditions. Read More »

Visualizing Flow Fields Around Colloids
Fluid Dynamics

Visualizing Flow Fields Around Colloids

A new technique for measuring displacements of tiny particles in a fluid reveals a previously unseen hydrodynamic flow pattern that could provide intel on the interface’s mechanical properties.   Read More »

An Active Particle in an Activity “Well”
Fluid Dynamics

An Active Particle in an Activity “Well”

A self-propelled particle trapped in a potential well defined by energy availability, has a unique swimming pattern that comes from hidden currents in the fluid in which it swims. Read More »

More Articles