Synopsis

Using Quantum Dots to Simulate Magnetism

Physics 14, s137
Researchers successfully use an array of quantum dots to create and study a Heisenberg spin chain.
C. J. van Diepen et al. [1]

The interaction of electron spins causes many interesting material properties, including magnetism and superconductivity. To better understand these properties, researchers would like to accurately simulate complex spin systems. That, however, is difficult to do on classical computers, as electron spin is a quantum-mechanical phenomenon, so researchers are instead turning to experimental “quantum simulators” to study these systems. Now, Cornelis Jacobus van Diepen and Tzu-Kan Hsiao of Delft University of Technology in the Netherlands and colleagues have experimentally simulated a simple magnetic system using a platform based on quantum dots [1]. While the platform is small enough to numerically simulate on a classical computer, the researchers say their demonstration indicates the viability of quantum dots to probe large-scale spin systems.

The team’s quantum simulator consists of a sandwich of two semiconductors, gallium arsenide and aluminum gallium arsenide. At the interface between the two materials, there are electric potentials that mimic the positive charge of an atomic nucleus. These artificial atomic “nuclei” trap electrons, creating quantum dots.

By tuning the interactions between the electrons in four neighboring quantum dots, the team simulated the behavior of a four-electron “Heisenberg spin chain,” with each quantum dot holding one electron spin. They characterized the system by initializing it in a certain state. Then, they measured the energy of the spins, finding they matched predictions from classical numerical simulations. In addition, they made the spins in the spin chain oscillate in a manner predicted by theory.

In future work, the team says that they plan to simulate spin systems arranged in different lattice configurations. They also hope to investigate using other semiconductors to create their platform, with the aim of making a magnetically quieter environment for the quantum dot spins.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.

References

  1. C. J. van Diepen et al., “Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots,” Phys. Rev. X 11, 041025 (2021).

Subject Areas

Quantum InformationQuantum Physics

Related Articles

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

Quantifying the Background Radiation Hitting Superconducting Qubits
Quantum Physics

Quantifying the Background Radiation Hitting Superconducting Qubits

Researchers have characterized the naturally occurring background radiation hitting a typical quantum circuit—a result that might help with the engineering of devices that are less vulnerable to radiation-induced decoherence. Read More »

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

More Articles