Synopsis

Doubly Strange Nucleus Observed

Physics 14, s15
Particle physicists have detected a short-lived nucleus containing two strange quarks, whose properties could provide new insights into the behavior of other nuclear particles.
S. Hayakawa/Japan Atomic Energy Agency

Baryons are three-quark particles, such as protons, neutrons, and the lesser-known hyperons. The latter’s claim to fame is that they contain at least one strange quark. Researchers study hyperons to understand how baryons interact. One experiment, known as the J-PARC E07 experiment, has now uncovered a very rare interaction in which a hyperon with two strange quarks binds to a normal nucleus [1]. By measuring precisely how this “hypernucleus” decayed, the team behind the experiment was able to determine the particles’ binding energy.

The collaboration directed a beam of K mesons from J-PARC (the Japan Proton Accelerator Research Complex) into a diamond target. Collisions in the target produced hyperons—specifically Ξ hyperons that are made up of two strange quarks and one down quark. These hyperons then traversed a stack of photographic sheets that recorded the particle tracks. Using an automated track-identification system, the team extracted an event where a Ξ hyperon bonded with a nitrogen nucleus, briefly forming a doubly strange hypernucleus.

Only a handful of doubly strange hypernuclei have been seen before—in fact the events are so rare that they are often given their own names. The J-PARC E07 team has christened their event IBUKI, which is the name of a mountain on the Japanese main island. By identifying the decay products in this event, the team determined that Ξ hyperons bind to nitrogen nuclei with an energy of 1.27 MeV, which agrees with theoretical predictions. As more data are processed, the researchers expect to find roughly ten more Ξ-hyperon events, which could provide insights for nuclear physics as well as for theories of neutron star models.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.

References

  1. S. Hayakawa et al., “Observation of Coulomb-assisted nuclear bound state of Ξ14N system,” Phys. Rev. Lett. 126, 062501 (2021).

Subject Areas

Nuclear Physics

Related Articles

Probing the Skin of a Lead Nucleus
Astrophysics

Probing the Skin of a Lead Nucleus

Researchers make the most precise measurement yet of the neutron distribution in a heavy nucleus, with implications for the structure of neutron stars. Read More »

A Lightweight Among Heavyweights
Nuclear Physics

A Lightweight Among Heavyweights

Researchers have observed the lightest uranium isotope to date, offering insight into models of nuclear structure. Read More »

The Tiniest Superfluid Circuit in Nature
Superconductivity

The Tiniest Superfluid Circuit in Nature

A new analysis of heavy-ion collision experiments uncovers evidence that two colliding nuclei behave like a Josephson junction—a device in which Cooper pairs tunnel through a barrier between two superfluids. Read More »

More Articles