Synopsis

A Record Low for Laser-Cooled Molecules

Physics 14, s163
Researchers achieve the lowest temperature yet for laser-cooled molecules trapped in an optical lattice. 
K. Mehling/University of Colorado Boulder

For many years, ultracold atoms have been used in applications ranging from quantum many-body simulators to the world’s most precise clocks. Recently, researchers have begun adapting the techniques used to cool the atoms to instead cool molecules. Now, Jun Ye of the University of Colorado Boulder and colleagues have laser cooled molecules in an optical trap to a temperature of 1 𝜇K, 20 times colder than the previous record.

To achieve this low temperature, the team employed multiple cooling techniques. First, they trapped 50,000 yttrium monoxide molecules by combining laser beams and magnetic fields in an approach named magneto-optical trapping, cooling the molecules to 2 mK. Then, they cooled the system to 4 𝜇K with a technique known as gray molasses cooling, which involves lowering the kinetic energy of the molecules using an optical field formed by interfering multiple laser beams. Finally, the team transferred 1200 molecules to a 1D optical lattice and dimmed the lasers, which lowers the lattice’s potential wells. This further cooled the molecules to 1 𝜇K.

The team showed that molecules trapped inside the lattice behave similarly to atoms, with a comparable lifetime and heating rate. In addition, they found that gray molasses cooling is robust against variations of the experimental parameters inside the optical trap, something they say might open the door for controlling many other molecules. The team is now working to increase the number of trapped molecules inside the final 1D lattice by an order of magnitude, a necessary requirement for quantum simulation and ultracold chemistry applications.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.

References

  1. Y. Wu et al., “High phase-space density of laser-cooled molecules in an optical lattice,” Phys. Rev. Lett. 127, 263201 (2021).

Subject Areas

Atomic and Molecular Physics

Related Articles

Controlling Single Photons with Rydberg Superatoms
Atomic and Molecular Physics

Controlling Single Photons with Rydberg Superatoms

New schemes based on Rydberg superatoms placed in optical cavities can be used to manipulate single photons with high efficiency. Read More »

A Quick Way to Measure Isotope Ratios
Atomic and Molecular Physics

A Quick Way to Measure Isotope Ratios

A new laser-based method allows scientists to detect the isotope concentration of different chemicals in a gas in a short time. Read More »

Electron-Ion Collisions Measured in a Cryogenic Facility
Atomic and Molecular Physics

Electron-Ion Collisions Measured in a Cryogenic Facility

Researchers use lasers and extreme cooling to monitor the rotational states of molecular ions after they collide with electrons, confirming predictions about the rates of these collisions. Read More »

More Articles