Synopsis

An Octad for Darmstadtium and Excitement for Copernicium

Physics 14, s6
The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.”
Orlando Florin Rosu/stock.adobe.com

A holy grail of nuclear physics is to understand the stability of the periodic table’s heaviest elements. The problem is, these elements only exist in the lab and are hard to make. In an experiment at the GSI Helmholtz Center for Heavy Ion Research in Germany, researchers have now observed a previously unseen isotope of the heavy element darmstadtium and measured the decay of an excited state of an isotope of another heavy element, copernicium [1]. The results could provide “anchor points” for theories that predict the stability of these heavy elements, says Anton Såmark-Roth, of Lund University in Sweden, who helped conduct the experiments.

A nuclide’s stability depends on how many protons ( Z) and neutrons ( N) it contains. Most elements with Z above 82 (lead) are unstable, although a region of relative stability appears around thorium (Z=90) and uranium (Z=92). Researchers predict that another “island of stability” exists for superheavy elements—somewhere around Z=114—but they have yet to uncover its position.

The team made their discoveries while studying the decay of isotopes of flerovium, which they created by hitting a plutonium target with calcium ions. In their experiments, flerovium-288 ( Z=114, N=174) decayed first into copernicium-284 ( Z=112, N=172) and then into darmstadtium-280 ( Z=110, N=170), a previously unseen isotope. They also measured an excited state of copernicium-282, another isotope of copernicium. Copernicium-282 is interesting because it contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a superheavy even-even nucleus, Såmark-Roth says.

–Katherine Wright

Katherine Wright is the Deputy Editor of Physics Magazine.

References

  1. A. Såmark-Roth et al., “Spectroscopy along flerovium decay chains: Discovery of 280Ds and an excited state in 282Cn,” Phys. Rev. Lett. 126, 032503 (2021).

Subject Areas

Nuclear Physics

Related Articles

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

More Articles