Synopsis

An Octad for Darmstadtium and Excitement for Copernicium

Physics 14, s6
The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.”
Orlando Florin Rosu/stock.adobe.com

A holy grail of nuclear physics is to understand the stability of the periodic table’s heaviest elements. The problem is, these elements only exist in the lab and are hard to make. In an experiment at the GSI Helmholtz Center for Heavy Ion Research in Germany, researchers have now observed a previously unseen isotope of the heavy element darmstadtium and measured the decay of an excited state of an isotope of another heavy element, copernicium [1]. The results could provide “anchor points” for theories that predict the stability of these heavy elements, says Anton Såmark-Roth, of Lund University in Sweden, who helped conduct the experiments.

A nuclide’s stability depends on how many protons ( Z) and neutrons ( N) it contains. Most elements with Z above 82 (lead) are unstable, although a region of relative stability appears around thorium (Z=90) and uranium (Z=92). Researchers predict that another “island of stability” exists for superheavy elements—somewhere around Z=114—but they have yet to uncover its position.

The team made their discoveries while studying the decay of isotopes of flerovium, which they created by hitting a plutonium target with calcium ions. In their experiments, flerovium-288 ( Z=114, N=174) decayed first into copernicium-284 ( Z=112, N=172) and then into darmstadtium-280 ( Z=110, N=170), a previously unseen isotope. They also measured an excited state of copernicium-282, another isotope of copernicium. Copernicium-282 is interesting because it contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a superheavy even-even nucleus, Såmark-Roth says.

–Katherine Wright

Katherine Wright is the Deputy Editor of Physics Magazine.

References

  1. A. Såmark-Roth et al., “Spectroscopy along flerovium decay chains: Discovery of 280Ds and an excited state in 282Cn,” Phys. Rev. Lett. 126, 032503 (2021).

Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles