Synopsis

Spin Control Without Magnetic Fields

Physics 14, s91
Researchers demonstrate that they can control the polarization direction of a spin current without having to apply a magnetic field, which could aid in implementing energy-efficient spintronics devices.
J. Ingla-Aynés et al. [1]

In graphene, spin currents can live much longer than they can in other materials, making the material an ideal platform for future spintronic devices. But there is a problem: To manipulate graphene’s spin currents, researchers need to apply a magnetic field to the material. The necessary hardware is difficult to integrate into circuits, limiting how small graphene-based spin devices could be shrunk. Now Josep Ingla-Aynés of the Nanoscience Cooperative Research Center (CIC NanoGUNE), Spain, and colleagues have demonstrated a method to manipulate—at room temperature—graphene spin currents using only electric fields [1].

The team stamped a sheet of tungsten diselenide on a sheet of bilayer graphene and heated the two materials to bond them together. Then they patterned the structure with a series of electrodes, which they used to apply an in-plane electric field and a gate voltage and to inject a spin current into the graphene. Experiments were performed at 50 K and at room temperature.

At both temperatures, the team observed that they could switch the polarization direction of the spin current by changing the magnitude of both the in-plane electric field and the gate voltage. They say that the control comes from the presence of spin-orbit coupling in the tungsten diselenide layer. This effect produces an effective magnetic field in the graphene that is sufficient to change the spin angle.

Ingla-Aynés says that the demonstration represents a room-temperature version of the long-sought-after “Datta Das” spin transistor. The Datta Das spin transistor is a device whose electrical resistance can be switched from high to low by changing the polarization direction of the spin current. Such devices have been realized at low temperatures using two-dimensional electron gases but not at higher temperatures.

–Katherine Wright

Katherine Wright is the Deputy Editor of Physics Magazine.

References

  1. J. Ingla-Aynés et al., “Electrical control of valley-Zeeman spin-orbit-coupling-induced spin precession at room temperature,” Physical Review Letters 127, 047202 (2021).

Subject Areas

SpintronicsGraphene

Related Articles

Holey Material Enhances Electron Flow
Condensed Matter Physics

Holey Material Enhances Electron Flow

An array of holes in a 2D material enhances an effect that improves the flow of electric currents. Read More »

Mapping Spin Waves with a Strobe Light
Condensed Matter Physics

Mapping Spin Waves with a Strobe Light

A method for imaging spin waves in magnetic materials uses flash-like intensity variations in a laser beam to capture the wave motion at specific moments in time. Read More »

Putting the Twist into Quantum Imaging
Graphene

Putting the Twist into Quantum Imaging

A theoretical analysis suggests that a novel “twisting “microscope could offer new insights into the exotic electronic behavior of layered 2D materials. Read More »

More Articles