Synopsis

Crazy Ants Behave like Active Swimmers

Physics 16, s144
A group of 100 ants moving a heavy load acts like a single self-propelled particle swimming though a fluid.
T. Heckenthaler et al. [1]

Without verbal communication, a group of 100 longhorn crazy ants can simultaneously grab onto an object 10,000 times their weight and collectively walk it to their nest. Scientists understand the ant-behavioral rules behind this feat but have lacked a coarse-grained description of how the group moves. Tabea Heckenthaler of the Weizmann Institute of Science in Israel and her colleagues now provide that description, showing that it fits expectations for a self-propelled particle [1]. The finding offers a simplified route to modeling complex systems.

When a foraging ant happens upon a tasty morsel too big to carry alone, she recruits other ants via a pheromone trail. When enough helpers are gathered, they grab on with their mouths and move the object toward home. Ants at the front pull the load, while those at the back lift to reduce friction. From studies of individual ants, scientists have gleaned other details; for example, after an ant grabs on, she spends around 10 seconds pulling in what she thinks is the direction of the nest—regardless of the group’s actual direction—before aligning her efforts with the other workers. There is also a constant turnover of workers, with ants dropping off and new ants immediately filling gaps.

T. Heckenthaler/Weizmann Institute of Science
The motion of an object moved by a group of ants resembles that of a self-propelled particle.

Instead of accounting for such individual behaviors, Heckenthaler and her colleagues consider the ants and the food item as a single moving system. From experiments performed with a cog-shaped load coated in cat food (to encourage the ants), they find that the ant-load system follows trajectories similar to the directed walks of individual self-propelled particles. Comparing trajectories of cogs carried by different numbers of ants, the researchers then show that they can work out details of the ants’ individual behavior from the group-level measurements.

–Katherine Wright

Katherine Wright is the Deputy Editor of Physics Magazine.

References

  1. T. Heckenthaler et al., “Connecting cooperative transport by ants with the physics of self-propelled particles,” PRX Life 1, 023001 (2023).

Subject Areas

Biological Physics

Related Articles

AI Gives Ultrasound Imaging a Boost
Biological Physics

AI Gives Ultrasound Imaging a Boost

A new method for obtaining high-resolution images of cells from low-resolution ultrasound data enables longer, noninvasive monitoring of organisms. Read More »

Network Hierarchy Controls Chaos
Biological Physics

Network Hierarchy Controls Chaos

The interplay between microscopic and macroscopic dynamics in a brain-like network enhances the robustness of a state that optimizes the network’s performance. Read More »

A Potential Tool for Diagnosing Alzheimer’s Disease
Biological Physics

A Potential Tool for Diagnosing Alzheimer’s Disease

Transforming an MRI brain scan into a hyperbolic network of nodes allows researchers to detect brain connectivity disruption caused by Alzheimer’s disease. Read More »

More Articles