Synopsis

Nuclear Ground State Has Molecule-Like Structure

Physics 16, s167
The protons and neutrons in a nucleus can form clusters analogous to atoms in a molecule, even in the nuclear ground state.
P. Li/Chinese Academy of Sciences.

Nuclei are traditionally described as spherical blobs without much internal structure, a picture that was supported by the classic shell model. For decades, however, researchers have known that protons and neutrons in some excited nuclei form molecule-like structures in which clusters of nucleons play the roles of atoms. Now experiments by Pengjie Li of the Chinese Academy of Sciences and his colleagues provide the clearest evidence to date that nuclei can “clusterize” even in their ground states [1].

Experimental evidence for clusterization was mainly for nuclei with equal numbers of protons and neutrons. These nuclei can partition into superstable alpha particles, which are made of two protons and two neutrons. Adding neutrons changes things, and theory and experiments indicated that neutron-rich nuclei can form clusters in their ground states. The stable isotope beryllium-9, for example, has four protons and five neutrons—the ingredients for two alphas plus an extra neutron. Although experiments with beryllium-9 suggested ground-state clustering, the odd number of neutrons made a theoretical treatment more challenging, and this picture has not yet been verified with state-of-the-art calculations.

Beryllium-10 is unstable but easier to model, so Li and his colleagues sent a beam of the isotope into a solid hydrogen target, causing hydrogen nuclei (protons) to “knock out” alphas from beryllium-10 nuclei. Detecting all three products—the proton, the alpha, and the remaining helium-6 fragment—of this interaction allowed the researchers to directly measure the locations of the alphas in the original nucleus and compare the results with up-to-date calculations. The team showed that the ground state of beryllium-10 is analogous to a diatomic molecule, with two alpha particles acting like atoms and two neutrons orbiting like a pair of electrons forming a covalent bond.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics Magazine.

References

  1. P. J. Li et al., “Validation of the 10Be ground-state molecular structure using 10Be(p,p𝛼)6He triple differential reaction cross-section measurements,” Phys. Rev. Lett. 131, 212501 (2023).

Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles