Synopsis

Fluid Flow Anchors Intracellular Structure

Physics 17, s125
Theorists have developed a model to explain how a protein structure keeps its position while being buffeted by currents.
W. Liao and E. Lauga [1]

In organisms that reproduce sexually, each reproductive cell must contain half of the individual’s complete genetic material. In mammalian egg cells, this halving occurs when the chromosomes are pulled apart by a freely floating protein scaffold called the meiotic spindle. Experiments have shown that this division is preceded by a toroidal circulation in the cell’s cytoplasm, leaving researchers puzzled by how the spindle stays in place. Weida Liao and Eric Lauga at the University of Cambridge have now discovered a mechanism that could be responsible [1].

Cytoplasm circulation is driven by the wave-like motion of polymeric filaments that sprout from one end of the cell. Fluid drawn toward this protein cap constitutes the central part of the toroidal flow. When it reaches the spindle, it spreads out along the inner surface of the cell membrane before returning via the cell’s interior. The spindle sits just below the protein cap, where the flow diverges—a configuration that researchers would expect to become unstable if fluctuations were to move the spindle just slightly off-center.

Liao and Lauga built numerical and analytical fluid dynamics models incorporating measurements gathered from experiments. They found that the spindle’s position would indeed be unstable if the spindle were small relative to the size of the fast-moving part of the flow near the cap. However, the spindle is large enough that a pressure differential induced across it by the flow sucks the structure back into position whenever it’s perturbed. Next, the researchers hope to investigate the flow’s effect on other structures in the cell.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. W. Liao and E. Lauga, “Hydrodynamic mechanism for stable spindle positioning in meiosis II oocytes,” PRX Life 2, 043003 (2024).

Subject Areas

Fluid DynamicsBiological Physics

Related Articles

Toward a Second Law for Living Systems
Biological Physics

Toward a Second Law for Living Systems

A new theory related to the second law of thermodynamics describes the motion of active biological systems ranging from migrating cells to traveling birds. Read More »

Vaccination Strategy Targets Fast-Changing Pathogens
Interdisciplinary Physics

Vaccination Strategy Targets Fast-Changing Pathogens

A theory outlines an immunization protocol that fosters powerful antibodies while avoiding immune-cell death. Read More »

Simulations Suggest Flu Virus Vulnerability
Biological Physics

Simulations Suggest Flu Virus Vulnerability

Studies of influenza A’s unusual propulsion strategy suggest that drugs could target a critical protein. Read More »

More Articles