Synopsis

Alignment of Cells Affects Secondary Tumor Growth

Physics 17, s141
Cell–cell alignment and a background of stationary cells together shape the emergence of cellular clusters in a primary tumor.
Q. J. S. Braat et al. [1]

In a cancer patient, tumor cells that circulate throughout the body in clusters pose a greater threat of metastasis than those that circulate individually. Those clusters are thought to come together while the cells are still within the primary tumor, but researchers still don’t understand the formation mechanism. Quirine Braat at Eindhoven University of Technology in the Netherlands and her colleagues have now used computer simulations to identify some of the factors at play [1].

The team used a computational lattice model of cells and tissues (the cellular Potts model) to examine a 2D layer of two types of cells—one motile (able to move) and one nonmotile. The tendency of the motile cells to migrate was represented in the model by an external force applied to each one. For a given cell, this force could align strongly or weakly with the forces acting on its neighboring cells.

By varying the alignment strengths and by tuning the environment through which the cells migrated, the researchers found that the formation of coherent clusters depended on a nuanced interplay between these two factors. When nonmotile cells were sparse and motile cells could move freely, stronger alignment gave larger clusters. However, in a cellular environment dense with nonmotile cells, the largest motile clusters were formed for intermediate alignment strengths.

Real tumors exhibit both densely packed cells and strong cell–cell alignment, suggesting that the formation of large clusters is inhibited. The researchers say that the mean cluster size predicted by the model for such conditions agrees with experimental observations of circulating tumor cells and could have implications for understanding migrating cluster sizes after detachment from the primary tumor.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. Q. J. S. Braat et al., “Formation of motile cell clusters in heterogeneous model tumors: The role of cell-cell alignment,” Phys. Rev. E 110, 064401 (2024).

Subject Areas

Biological PhysicsSoft Matter

Related Articles

Flexible Semiconductor Made from Hydrogel
Biological Physics

Flexible Semiconductor Made from Hydrogel

A new recipe for making hydrogels delivers a material that is both flexible and semiconducting—desired properties for interfaces in implantable medical devices. Read More »

Assessing the Brain at a Range of Frequencies
Biological Physics

Assessing the Brain at a Range of Frequencies

A new frequency-based analysis of recordings from neurons in the brain may give insight into brain pathologies such as Parkinson’s disease. Read More »

Information Flow in Molecular Machines
Biological Physics

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells. Read More »

More Articles