Synopsis

Proton Effective Charge Depends on Neutron Population

Physics 17, s65
Experiments comparing neutron-rich cadmium with previous data on a neutron-poor version prove that a key parameter in nuclear calculations depends on the neutron-to-proton ratio.
RIKEN

When calculating properties of heavy nuclei, theorists often focus on a subset of the nucleons (protons and neutrons) and assume that these particles have “effective charges” that somehow compensate for all the nucleons that are ignored. However, choosing the appropriate effective charges can be challenging. Now Andrea Jungclaus of the Institute for the Structure of Matter in Spain and her colleagues have provided the first clear experimental evidence that effective charges depend on isospin—the neutron–proton ratio—and have measured this dependence in an unambiguous way [1]. The new information should improve the accuracy of calculations for heavy, neutron-rich nuclei, for which there is limited experimental data.

The nuclear shell model assigns each nucleon to a single-particle state that is similar to an electron orbital in an atom. Researchers have previously shown that the effective charge is different for different nuclei, but it hasn’t been clear whether the variation was attributable to differences in the orbital configuration of the nuclei or to differences in isospin (or both). Jungclaus and her colleagues isolated the effect of isospin by comparing excited-state properties of cadmium-130 with those measured previously in cadmium-98. These two nuclei have very different numbers of neutrons and thus a large difference in isospin. But they have similar orbital configurations since both have full neutron shells and are just two protons short of having full proton shells.

The researchers observed cadmium-130 nuclei produced when a uranium beam at RIKEN in Japan collided with a beryllium target. They combined shell model calculations and the new data along with previous data to determine an effective proton charge of +1.35 for this neutron-rich nucleus, compared with +1.17 for cadmium-98, suggesting an unexpectedly strong isospin dependence of the effective charge.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics Magazine.

References

  1. A. Jungclaus et al., “Excited-state half-lives in 130Cd and the isospin dependence of effective charges,” Phys. Rev. Lett. 132, 222501 (2024).

Subject Areas

Nuclear Physics

Related Articles

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

More Articles