Synopsis

Measuring Qubits with “Time Travel” Protocol

Physics 17, s76
Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state.
K. Murch/WUSTL

Quantum sensing can outperform classical sensing by placing the sensor in an initial state that optimally measures the target. However, choosing this optimal state requires having some preknowledge, such as knowing the orientation of a magnetic field in order to measure its strength. A new experiment overcomes this limitation using two entangled quantum bits (qubits), which are manipulated in a way that is equivalent to a qubit traveling back in time [1]. Through this “time travel,” the qubits can be placed in an optimal state without any preknowledge.

“Our work addresses a specific kind of problem that plagues many sensing setups: you have to know which direction to point the sensor,” explains Kater Murch from Washington University in St. Louis. When measuring a magnetic field with a spin qubit, for example, the spin’s rotation will return information about the field strength only if you point it in the optimal direction. Point it in a nonoptimal direction and you’ll get zero information about the field, wasting the measurement.

Murch and his colleagues have devised a protocol in which the probe qubit is entangled with a second qubit, called the ancilla. Following previous work, they show that the entanglement is mathematically equivalent to the ancilla traveling back in time to place the probe in an optimal state [2]. They further show that measuring the ancilla and the probe in a particular sequence can recover information about the field strength in all cases—so no measurement data are wasted as they can be in other protocols. The researchers foresee using this entanglement scheme in situations where a field—or another observable—is changing over time.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics Magazine based in Lyon, France.

References

  1. X. Song et al., “Agnostic phase estimation,” Phys. Rev. Lett. 132, 260801 (2024).
  2. D. R.  M. Arvidsson-Shukur et al., “Nonclassical advantage in metrology established via quantum simulations of hypothetical closed timelike curves,” Phys. Rev. Lett. 131 (2023).

Subject Areas

Quantum Information

Related Articles

Qubit Readout Mystery Solved
Quantum Information

Qubit Readout Mystery Solved

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected. Read More »

Qubits Manipulated on the Fly
Quantum Information

Qubits Manipulated on the Fly

A way to address the individual ions of a rotating ion crystal could allow scientists to perform quantum simulations in which each qubit can be carefully controlled. Read More »

Quantum Chip Cuts Unintended Signals
Quantum Information

Quantum Chip Cuts Unintended Signals

A 25-qubit quantum processor architecture reduces the stray signals that can cause errors and is suitable for scaling up. Read More »

More Articles