Synopsis

The limits of a closed shell

Physics 3, s104
In highly neutron deficient isotopes of lead, the normally stabilizing effects of a closed proton shell break down.
Illustration: Alan Stonebraker

The noble gas atoms, like xenon and argon, are inert because their electrons form a closed shell. Similarly, the filling of proton or neutron shell states in atomic nuclei has a stabilizing effect. New data are, however, showing that even a closed shell structure is a fragile boundary, especially for weakly bound, exotic nuclei far from the valley of stability.

Lead is an attractive element to study these effects. With 82 protons, lead has a closed shell structure for the protons. Lead also has many accessible isotopes, which allows experimentalists to measure how the binding effects of a closed shell structure weaken in nuclei with progressively fewer neutrons.

One reason that the closed shell weakens in neutron-deficient elements is that attractive interactions between valence protons and neutrons in spatially overlapping orbits lower the energy of certain proton excitations. A light lead nucleus with these proton excitations has a nonspherical, or deformed, shape that is different than the normal states of the nucleus. To see this “shape coexistence,” however, requires highly sensitive spectroscopy of the nuclear states.

Now, in a Rapid Communication appearing in Physical Review C, a collaboration between Finland, the UK, France, and Belgium reports a gamma-ray spectrum of 180Pb—the most neutron deficient isotope of Pb yet studied with spectroscopy. They first detected the gamma rays from a variety of nuclear reactions and then identified those gamma rays coming from 180Pb nuclei. To do this, they measured the characteristic alpha decay of 180Pb at the focal plane of a magnetic spectrometer. The experiment was a true tour-de-force as the cross section for producing 180Pb is exceptionally small (of order 10 nanobarns).

The team’s results will provide valuable constraints on femtoscopic models of nuclear structure near the proton drip line. – Rick Casten


Subject Areas

Nuclear Physics

Related Articles

A Route Toward the Island of Stability
Nuclear Physics

A Route Toward the Island of Stability

Scientists have synthesized an isotope of the superheavy element livermorium using a novel fusion reaction. The result paves the way for the discovery of new chemical elements. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

More Articles