Synopsis

An all-organic almost one-dimensional ferromagnet

Physics 3, s156
A new compound is found to be the best yet fully organic realization of a one-dimensional ferromagnet.
Credit: T. Sugano et al., Phys Rev. B (2010)

Organic magnets provide a fascinating playground for testing models of magnetism, as rich carbon chemistry allows one to tune the magnetic, optical, and other properties of these materials. Nitronyl nitroxides are a family of particularly versatile organic radicals, which provided the first example of a purely organic ferromagnet p-NPNN, formed by chains of weakly interacting molecules.

In a Rapid Communication published in Physical Review B, Tadashi Sugano and collaborators from Japan and the UK use muon-spin rotation and electron spin resonance techniques to study 2-benzimidazolyl nitronyl nitroxide ( 2-BIMNN), another member of the nitronyl nitroxides family. They find that 2-BIMMN displays long-range ferromagnetic ordering, with a transition temperature of Tc=1K. In the short list of quasi-one-dimensional purely organic ferromagnets, 2-BIMMN turns out to be especially interesting, as the ratio of the transition temperature to the exchange energy J that describes intrachain spin-spin interactions is small, indicating that the coupling between different chains is extremely weak, and therefore 2-BIMMN can serve as a nearly ideal model of a one-dimensional ferromagnetically coupled spin chain. – Ashot Melikyan


Subject Areas

MagnetismNanophysics

Related Articles

Programming a Crystal Defect with Light
Mechanics

Programming a Crystal Defect with Light

Forces imposed by laser light can manipulate the shape of a membrane’s vibrational modes. Read More »

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Ferromagnetic Ferroelectricity from Orbital Ordering
Magnetism

Ferromagnetic Ferroelectricity from Orbital Ordering

Crystals that have both a particular structure and a particular combination of electronic orbitals can be simultaneously ferromagnetic and ferroelectric. Read More »

More Articles