Synopsis

Far from the stable nuclei

Physics 3, s166
An advance in computational techniques for performing nuclear shell model calculations points to an island of inversion near chromium-64.
Credit: Carin Cain

Nuclei further and further from the line of stability are being widely studied using beams of unstable nuclei. The shell model provides an excellent description of nuclear structure, but its predictions are most powerful when it includes many active nuclear orbits and a realistic description of the effective interaction between the active nucleons. This requires time-consuming computations that can handle huge amounts of data.

Writing in Physical Review C, Silvia Lenzi at the National Institute of Nuclear Physics (INFN) in Padova, Italy, and colleagues in France and Spain, report a significant computational advance—involving matrix dimensions reaching ten billion—in shell-model calculations. Starting with a core nucleus of calcium- 48, they include the remaining proton and neutron orbits from the pf major shell, and the g9/2 and d5/2 orbits for neutrons from the next major shell, to study neutron-rich nuclei that are centered around chromium- 64. In particular, they explore a possible “island of inversion,” where the neutron dg orbits are filled in preference to the pf ones.

Lenzi et al. also calculate the allowed states of the nuclei as pairs of protons are removed from nickel- 68 and find a rapid onset of deformation (changes in the nuclear shape). The deformation is signaled by a decrease in the excitation energy of the first excited state (denoted by 2+) and a concomitant increase in the transition strength to the ground state. Their calculations point to an island of inversion that is similar to the one seen near magnesium- 32. Lenzi et al. are able to reproduce the evolution of deformation along various isotopic chains, suggesting they have achieved a comprehensive description in terms of the shell model. – John Millener


Subject Areas

Nuclear Physics

Related Articles

Neutrino Mass in the Crosshairs
Nuclear Physics

Neutrino Mass in the Crosshairs

The first frequency-based limit on the neutrino’s mass sets the stage for next-generation experiments. Read More »

How Tightly Bound Are Hypertritons?
Astrophysics

How Tightly Bound Are Hypertritons?

Researchers have pinned down the binding energy and lifetime of the so-called hypertriton, a particle that could help explain the structure of neutron stars. Read More »

What Do Unstable Atomic Nuclei Look Like?
Nuclear Physics

What Do Unstable Atomic Nuclei Look Like?

The first electron-scattering experiment off unstable radioisotopes marks a milestone for understanding the shape of exotic atomic nuclei. Read More »

More Articles