Synopsis

Far from the stable nuclei

Physics 3, s166
An advance in computational techniques for performing nuclear shell model calculations points to an island of inversion near chromium-64.
Credit: Carin Cain

Nuclei further and further from the line of stability are being widely studied using beams of unstable nuclei. The shell model provides an excellent description of nuclear structure, but its predictions are most powerful when it includes many active nuclear orbits and a realistic description of the effective interaction between the active nucleons. This requires time-consuming computations that can handle huge amounts of data.

Writing in Physical Review C, Silvia Lenzi at the National Institute of Nuclear Physics (INFN) in Padova, Italy, and colleagues in France and Spain, report a significant computational advance—involving matrix dimensions reaching ten billion—in shell-model calculations. Starting with a core nucleus of calcium- 48, they include the remaining proton and neutron orbits from the pf major shell, and the g9/2 and d5/2 orbits for neutrons from the next major shell, to study neutron-rich nuclei that are centered around chromium- 64. In particular, they explore a possible “island of inversion,” where the neutron dg orbits are filled in preference to the pf ones.

Lenzi et al. also calculate the allowed states of the nuclei as pairs of protons are removed from nickel- 68 and find a rapid onset of deformation (changes in the nuclear shape). The deformation is signaled by a decrease in the excitation energy of the first excited state (denoted by 2+) and a concomitant increase in the transition strength to the ground state. Their calculations point to an island of inversion that is similar to the one seen near magnesium- 32. Lenzi et al. are able to reproduce the evolution of deformation along various isotopic chains, suggesting they have achieved a comprehensive description in terms of the shell model. – John Millener


Subject Areas

Nuclear Physics

Related Articles

Searching for a New Force
Atomic and Molecular Physics

Searching for a New Force

A hypothetical fifth force could be detected by its effect on the optical transition frequencies of an element’s different isotopes. Read More »

Peering into Protons
Particles and Fields

Peering into Protons

The internal structure of protons bound in nuclei has been probed by studying short-lived particles created when high-energy photons strike nuclei. Read More »

Lithium Cosmic Rays Are Not Primordial
Nuclear Physics

Lithium Cosmic Rays Are Not Primordial

A precision measurement of cosmic rays at the International Space Station finds that lithium-7 is produced by the fragmentation of heavier nuclei. Read More »

More Articles