Synopsis

Far from the stable nuclei

Physics 3, s166
An advance in computational techniques for performing nuclear shell model calculations points to an island of inversion near chromium-64.
Credit: Carin Cain

Nuclei further and further from the line of stability are being widely studied using beams of unstable nuclei. The shell model provides an excellent description of nuclear structure, but its predictions are most powerful when it includes many active nuclear orbits and a realistic description of the effective interaction between the active nucleons. This requires time-consuming computations that can handle huge amounts of data.

Writing in Physical Review C, Silvia Lenzi at the National Institute of Nuclear Physics (INFN) in Padova, Italy, and colleagues in France and Spain, report a significant computational advance—involving matrix dimensions reaching ten billion—in shell-model calculations. Starting with a core nucleus of calcium- 48, they include the remaining proton and neutron orbits from the pf major shell, and the g9/2 and d5/2 orbits for neutrons from the next major shell, to study neutron-rich nuclei that are centered around chromium- 64. In particular, they explore a possible “island of inversion,” where the neutron dg orbits are filled in preference to the pf ones.

Lenzi et al. also calculate the allowed states of the nuclei as pairs of protons are removed from nickel- 68 and find a rapid onset of deformation (changes in the nuclear shape). The deformation is signaled by a decrease in the excitation energy of the first excited state (denoted by 2+) and a concomitant increase in the transition strength to the ground state. Their calculations point to an island of inversion that is similar to the one seen near magnesium- 32. Lenzi et al. are able to reproduce the evolution of deformation along various isotopic chains, suggesting they have achieved a comprehensive description in terms of the shell model. – John Millener


Subject Areas

Nuclear Physics

Related Articles

Hot “Pasta” Beneath a Star’s Crust
Astrophysics

Hot “Pasta” Beneath a Star’s Crust

Simulations find that pasta phases beneath a neutron star’s crust could dominate the star’s neutrino emission. Read More »

Ticking Toward a Nuclear Clock
Nuclear Physics

Ticking Toward a Nuclear Clock

The high-precision measurement of a nuclear transition of a thorium isotope is a key step towards the development of a nuclear optical clock. Read More »

A Precise Parity-Violation Measurement in Light Nuclei
Particles and Fields

A Precise Parity-Violation Measurement in Light Nuclei

A new measurement from the n3He Collaboration advances understanding of parity violation in few-nucleon systems. Read More »

More Articles