Synopsis

Know when to fold ‘em

Physics 4, s118
Corrugations found along the intestine’s inner wall reflect both a mechanical buckling and the constant birth and death of cells, theorists suggest.
E. Hannezo et al., Phys. Rev. Lett. (2011)

The complex geometrical shapes of living organisms often emerge from simple mechanical rules. For example, thin sheets of tissue can spontaneously buckle to relieve compressive stress, creating undulating patterns like fingerprints or tree bark.

In Physical Review Letters, Edouard Hannezo and colleagues from the Institut Curie in Paris use a buckling model to describe the corrugated inner lining of the intestine, which has a large surface area for absorbing nutrients. In their model, when cells in the single layer at the surface push against each other, they create undulations with wavelengths similar to those seen in animals. But in different parts of the intestine, these undulations ultimately take different forms: In the small intestine, fingerlike “villi” protrude from the surface, while in the colon, cavelike “crypts” extend into the tissue.

The researchers attribute the different morphologies to a new ingredient: variations in the birth and death rate of cells. The division of special cells, which lie deep in the corrugations, continually replenish intestinal cells. The new cells migrate up along the surface to local peaks, where they die. In the model, this migration is impeded by friction from the underlying membrane, so the regions of proliferating cells are more compressed. If the excess compression is big enough, it changes the steady-state shape. In numerical analysis, Hannezo et al. find that this kind of model predicts villi, crypts, or ridges for different choices of parameters. – Don Monroe


Subject Areas

Soft MatterBiological Physics

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

More Articles