Synopsis

Know when to fold ‘em

Physics 4, s118
Corrugations found along the intestine’s inner wall reflect both a mechanical buckling and the constant birth and death of cells, theorists suggest.
E. Hannezo et al., Phys. Rev. Lett. (2011)

The complex geometrical shapes of living organisms often emerge from simple mechanical rules. For example, thin sheets of tissue can spontaneously buckle to relieve compressive stress, creating undulating patterns like fingerprints or tree bark.

In Physical Review Letters, Edouard Hannezo and colleagues from the Institut Curie in Paris use a buckling model to describe the corrugated inner lining of the intestine, which has a large surface area for absorbing nutrients. In their model, when cells in the single layer at the surface push against each other, they create undulations with wavelengths similar to those seen in animals. But in different parts of the intestine, these undulations ultimately take different forms: In the small intestine, fingerlike “villi” protrude from the surface, while in the colon, cavelike “crypts” extend into the tissue.

The researchers attribute the different morphologies to a new ingredient: variations in the birth and death rate of cells. The division of special cells, which lie deep in the corrugations, continually replenish intestinal cells. The new cells migrate up along the surface to local peaks, where they die. In the model, this migration is impeded by friction from the underlying membrane, so the regions of proliferating cells are more compressed. If the excess compression is big enough, it changes the steady-state shape. In numerical analysis, Hannezo et al. find that this kind of model predicts villi, crypts, or ridges for different choices of parameters. – Don Monroe


Subject Areas

Soft MatterBiological Physics

Related Articles

An Active Particle in an Activity “Well”
Fluid Dynamics

An Active Particle in an Activity “Well”

A self-propelled particle trapped in a potential well defined by energy availability, has a unique swimming pattern that comes from hidden currents in the fluid in which it swims. Read More »

How a Virus Rolls Itself Across a Cell Surface
Biological Physics

How a Virus Rolls Itself Across a Cell Surface

To infect a cell, the flu virus needs to move, and a new theory suggests how it does that. Read More »

A Recipe for Universal Vaccines
Nonlinear Dynamics

A Recipe for Universal Vaccines

Researchers use nonequilibrium statistical physics methods to guide the design of vaccines that are effective against many strains of a virus, a holy grail of immunology. Read More »

More Articles