Synopsis

The Bound and the Free

Physics 4, s183
Precisely prepared photon states can probe quantum statistical phenomena and generate intriguing forms of quantum entanglement.
J. DiGuglielmo et al., Phys. Rev. Lett. (2011)

One of the strangest of the strange manifestations of quantum mechanics is entanglement, a condition in which the states of distant objects can be intimately correlated. In practical terms, entanglement is viewed as a means to rapid solution of some hard computational problems by quantum computing. During the 1990s, theorists proposed that entanglement actually comes in two flavors: “bound” entanglement, such as the entangled singlet state of two spin- 1/2 particles that cannot be reduced to any simpler form, and “free” entanglement, in which a complex entangled state can be distilled down into a more basic set of states. In recent years, claims of experimental confirmation of bound entanglement have been made, but these are controversial. Writing in Physical Review Letters, James DiGuglielmo at Leibniz University, Germany, and colleagues report their experiments on unconditional preparation of bound states of light.

Previous experiments have typically examined correlations with “postselection” methods to filter desired events from an initial distribution, however, DiGuglielmo et al. have designed a system to deterministically and precisely prepare their entangled states. The authors create four continuous-variable entangled laser fields with optical parametric amplifiers and verify that they have created bound entangled states by means of high-efficiency detectors to measure the correlations. The system offers not only technological utility in preparing exact states for future experiments, but the research team also provides a tool for studying irreversibility at the quantum level to better characterize the connections between quantum information and thermodynamics. – David Voss


Subject Areas

Quantum Information

Related Articles

Midcircuit Operations in Atomic Arrays
Atomic and Molecular Physics

Midcircuit Operations in Atomic Arrays

Three research groups have exploited the nuclear spins of ytterbium-171 to manipulate qubits before they are read out—an approach that could lead to efficient error-correction schemes for trapped-atom computing platforms. Read More »

Efficient Control of Trapped Ions
Electronics

Efficient Control of Trapped Ions

A new control architecture makes 1000-qubit trapped-ion quantum computers more feasible. Read More »

Matching a Measurement to a Quantum State
Quantum Information

Matching a Measurement to a Quantum State

A new method identifies the most sensitive measurement that can be performed using a given quantum state, knowledge key for designing improved quantum sensors. Read More »

More Articles