Synopsis

Nanoparticles in Hiding

Physics 5, s144
Cloaking mechanisms, analogous to those in optical metamaterials, can also hide regions that scatter electrons in semiconductors.
B. Liao et al., Phys. Rev. Lett. (2012)

The design of artificial metamaterials that allow “cloaking”—apparent invisibility to acoustic and electromagnetic waves—is more than a party trick. Many applications suggest themselves if one could create cloaking at useful frequencies or in technologically relevant systems. Writing in Physical Review Letters, Bolin Liao and colleagues at Massachusetts Institute of Technology, Cambridge, propose the use of cloaking in semiconductor devices to optimize electron mobility in nanostructured materials.

As semiconductor devices are miniaturized to smaller and smaller sizes, having proper control over electron scattering and transport becomes more and more significant. Could one create scattering centers in a semiconductor that are transparent at certain energies? The team presents a description of core-shell nanoparticles in a semiconductor matrix host where the nanoparticles are of a similar size to the electron wavelength. The nanoparticles would then be invisible to electrons, improving the electron mobility at these energies, with associated tunability.

As an analogy to the Mie theory for electromagnetic scattering problems, the partial-wave formalism expresses the total scattering cross section as a summation of contributions from “partial waves” with different angular momenta. To be practical, the nanoparticles would be of a similar size to the electron wavelength; thus higher order partial waves would inevitably contribute. Working under this framework, they adjust the electron wavelengths, the core-shell ratio, and the effective mass of the core and shell materials to achieve four orders of magnitude decrease in scattering within a narrow energy range. Liao et al. suggest an implementation that involves a gallium arsenide two-dimensional system, as well as a three-dimensional scheme involving thermoelectric materials. Possible applications of these “electron cloaks” include novel electronic switches and sensors, and efficient energy harvesting and conversion techniques. – Daniel Ucko


Subject Areas

Metamaterials

Related Articles

Metamaterials Control the Shape of Water Waves
Metamaterials

Metamaterials Control the Shape of Water Waves

A water wave incident on a grooved wall is shown to be analogous to electromagnetic waves called surface plasmon polaritons. Read More »

Symmetrical Binding for Topological States
Materials Science

Symmetrical Binding for Topological States

A new technique creates defects in a topological acoustic system that don’t destroy the system's chiral symmetry, protecting its topological states. Read More »

Cladding-Free Photonic Circuits Boost Dense On-Chip Integration
Photonics

Cladding-Free Photonic Circuits Boost Dense On-Chip Integration

A waveguiding mechanism completely removes the cladding layers that are part of today’s photonic circuits, like building highways without median strips for light. Read More »

More Articles